IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 2011-2037

Deformation process design for control of microstructure
in the presence of dynamic recrystallization and grain
growth mechanisms

Shankar Ganapathysubramanian, Nicholas Zabaras *

Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, Cornell University,
188 Frank H.T. Rhodes Hall, Ithaca, NY 14853-3801, USA

Received 12 December 2002; received in revised form 20 October 2003

Abstract

The idea of control of mechanical properties in materials through designer processing techniques is promoted
through this effort, in contrast to the standard control by alloying. Microstructure evolution through dynamic
recrystallization is accurately modelled for the large thermo-mechanical deformation of hyperelastic thermo-
viscoplastic materials. An innovative solution strategy and a computational algorithm are presented for the solution of
the direct deformation problem comprised of the kinematic, constitutive, contact and thermal sub-problems. The
description relies on microstructure based scalar state variables. The formulation follows an approach introduced
earlier by Busso [International Journal of Plasticity 14(4-5) (1998) 319] that considers an instability criterion to define
the onset of recrystallization. The analysis is performed for hot forming processes and the kinetics of grain growth is
controlled by the grain boundary energies and the energy stored through the dislocation density. A finite element
implementation is presented and validated with available numerical and experimental results.

In addition, an innovative computational framework is developed for the design of deformation processes using the
continuum sensitivity method (CSM) incorporating microstructure related state variables. This CSM involves con-
sidering the direct continuum equations, design-differentiating them and then evaluating their discretized form. This
method differs from common sensitivity techniques in which one design-differentiates the direct discretized equations.
The developed method is validated by comparing the computed sensitivities to those obtained through a finite difference
scheme. In addition, a gradient-based optimization framework is developed which uses the continuum sensitivity
method to evaluate the gradients of the objective functions and constraints. The effectiveness of the method is dem-
onstrated through a number of applications in the design optimization of hot forming processes in the presence of
recrystallization and grain growth mechanisms. These examples cover a wide range of applications as they include
parameter design (e.g., die design), preform design as well as multi-stage forming design.
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1. Introduction

It is well understood that the properties of a metal are strongly influenced by its microstructural features
like the grain size and the grain/sub-grain orientation/mis-orientation. During thermo-mechanical defor-
mation processes, materials experience significant microstructural changes which in turn strongly affect
their mechanical properties. The mechanisms of microstructure evolution during thermo-mechanical pro-
cessing include strain hardening, recrystallization and grain growth. The main reason for this renewed
interest lies in the attractiveness of control of microstructural properties in metallic materials by processing
rather than by alloying—the current, expensive industrial practice.

There have been extensive efforts, over the years, to understand the physics behind the evolution of
microstructure. The stored energy was established early as one of the important driving forces behind
recrystallization. Following this, many parameters affecting the process of recrystallization were identified.
In a crystalline solid, the free energy of the material is increased during deformation by the presence of
dislocations. On annealing however, the microstructure and the properties may be partially restored to the
original values by the process of recovery that involves only a partial restoration as the material reaches a
meta-stable state. Recrystallization is a further restoration process wherein new dislocation free grains are
formed within the deformed microstructure. Recrystallization may also take place during deformation at
elevated temperatures and this is termed as dynamic recrystallization. Our emphasis here is primarily with
modelling and control of dynamic recrystallization occurring in metals during hot forming operations.
Recrystallization removes most of the dislocations, but the material still contains grain/sub-grain bound-
aries, which are thermodynamically unstable. Furthermore, grain growth results in the elimination of small
grains, the growth of larger grains (both recrystallized and not recrystallized grains) and the grain
boundaries assuming a configuration of minimum energy. As normally the recrystallized grains are smaller
than the non-recrystallized grains, grain growth essentially leads to the growth of non-recrystallized grains.
This growth of grains is further classified into normal and abnormal grain growth depending upon the
kinetics of the process. In this effort, we constrain ourselves to normal grain growth. The main parameters
which have been identified to affect recrystallization include kinetics, straining rates and temperature. The
key literature, which describes recrystallization, affecting parameters and methods of control include
Cotterill and Mould (1976) and Humphreys and Hatherly (1995). An effort towards the development of a
continuum theory for dynamic recrystallization involves the work by Busso (1998), where a hypoelastic
constitutive framework is used.

Some work has also been performed on the control of microstructure in deformation processes that
include dynamic recrystallization. One recent effort towards design of deformation processes for uniform
microstructure is described in Lee et al. (2000). Here, the design of the die profile is carried out to yield
uniform microstructure (i.e., obtain uniform grain size distribution) in a hot extruded product. The analysis
is based on Yada and Senuma’s empirical equations for recrystallization and grain growth (Yada and
Senuma, 1986) and it involves a rigid, thermo-viscoplastic finite element analysis and considers both static
and dynamic recrystallization. Gao and Grandhi (2000) have also analyzed the problem of microstructure
optimization during hot forming processes. In their effort, a direct differentiation scheme is employed for
evaluating the sensitivities for a material (Waspaloy) undergoing dynamic recrystallization. Malas et al.
(1997) studied the control of microstructure during hot working processes based on optimal control theory
and developed state-space models for describing the material response as well as the mechanics of the
process. This method was then applied to the optimization of grain size and process parameters by
appropriately defining the die geometry and ram velocity during the steady extrusion of plain carbon steel.

This work is expanding our existing capabilities in deformation process design (Ganapathysubramanian
and Zabaras, 2002, 2003) to account for dynamic recrystallization and related grain growth processes. It
provides a methodology to accurately model dynamic recrystallization (recrystallization during hot
deformation process) by incorporating explicitly the various microstructural length scales that describe the
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state of the evolving microstructure. Our work follows that of Busso (1998) and incorporates an instability
(localization) criterion for the onset of recrystallization. A hyperelastic—viscoplastic framework is adopted
and a fully implicit radial-return mapping is considered for the integration of the constitutive model. This is
described in Section 2. The kinetics of recrystallization are provided in great detail in Section 2.2.

A continuum sensitivity problem is then introduced and a novel computational scheme for evaluating
the sensitivity fields is presented. One of the more attractive features of this model is the sensitivity problem,
which follows a design-differentiate and then discretize approach, rather than the standard, discretize and
then design-differentiate approach. The sensitivity analysis, which involves the kinematic, constitutive,
contact and thermal sensitivity sub-problems is presented in Section 3. The computed sensitivities are
validated and used in a gradient based optimization framework for the control of microstructure during
deformation processes. To our knowledge, this is the first time that a rigorous sensitivity framework is
presented for deformation process design that accounts for dynamic recrystallization and grain growth
mechanisms.

2. Direct deformation problem

The direct problem can be stated as follows: Compute the time history of deformation, temperature and
material state of a body deforming as a result of external forces and/or deformation due to contact and
friction at the workpiece—die interface. This deformation problem, which involves coupled mechanical
and thermal effects, is sub-divided into kinematic, constitutive, contact and thermal sub-problems. We shall
only provide a brief outline of the solution strategy as this direct problem is described extensively in our
earlier publications (Srikanth and Zabaras, 1999a).

2.1. Problem description

Consider %4, as the initial configuration of the body (at time # = 0) and %, as the current configuration.
The reference configuration 4, is taken as %4, in the total Lagrangian formulation and 4, in an updated
Lagrangian formulation. The total deformation gradient is then defined as follows in a total Lagrangian
framework:

(X, ¢
F(X,t) =Vop(X,1) :(péT’), detF >0 (2.1)
where ¢ (X, t) represents the deformation map from %, to %,,,. Using an updated Lagrangian framework,
one can introduce the relative deformation gradient F, and express F,,; as shown below:

Fn+l == Vod)(X, tn+1) == vn(z)(xn; tn+l)v0d)(X7 tn) = Fan (22)

In the above and all following equations, the subscript » + 1 will be omitted for all fields defined in the
current configuration and the subscript r will be used to indicate the reference configuration %, in an
updated Lagrangian framework. In an appropriate kinematic framework for large deformation inelastic
analysis incorporating thermal effects, the total deformation gradient is decomposed into thermal, plastic
and elastic parts as follows:

F = F°F°F’ (2.3)

where F° is the elastic deformation gradient, FP, the plastic deformation gradient and F” is the thermal part
of the deformation gradient.

With the above kinematic framework, notions of an intermediate thermally expanded hot unstressed
configuration and that of an intermediate hot plastically deformed relaxed configuration are introduced.
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Assuming isotropic thermal expansion, the evolution of the intermediate thermally expanded unstressed
configuration is given as follows:

FO(F)Y™ = por (24)

where f is the thermal expansion coefficient, treated as a constant in this work and [ is the second-order
identity tensor.

Following the work of Anand (Brown et al., 1989; Anand, 1985), the hyper-elastic constitutive equation
is written as

T = ¢°[E] (2.5)

where the strain measure, E , is defined with respect to the intermediate (unstressed) configuration as
= . . 1 . .
E =InU°. The corresponding conjugate stress measure T is the pullback of the Kirchhoff stress with
respect to R®,

T = det(U°)(R°)" TR® (2.6)

Here U° and R° are calculated from the polar decomposition, F° = R°U®, of F°. For an isotropic material,
the elastic moduli £ is given by

L =29 +{xk -1 (2.7)

where p is the shear modulus, « is the bulk modulus and .# denotes the fourth order identity tensor.

The evolution of FP is modelled using the classical J, theory with one scalar state variable s which
represents the isotropic hardening material behavior. The evolution of the plastic deformation gradient FP
is given by the normality rule,

L’ =F(FP)! (2.8)

where L' = D" and W’ = 0.
The flow rule can be stated as

_ 3. T
1T
where € is the equivalent strain rate to be defined in Section 2.2.
The equilibrium equation can be expressed on the reference configuration as

V. - Po+f=0 (2.10)

where V.- represents the divergence in the reference configuration. The Piola—Kirchhoff 1 stress, P, is
expressed as

P, = detF,TF," (2.11)

Recall that for the total Lagrangian analysis, F, = F.

The solution of the deformation problem proceeds incrementally in time starting from the initial con-
figuration %,. In order to solve the equilibrium equations at time ¢ = ¢,,|, the constitutive relationship
between the Cauchy stress T and the set involving the relative deformation gradient F, and temperature 6
should be evaluated. This is shown in Srikanth and Zabaras (1999a).
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2.2. Constitutive problem

Microstructure related length scales are now introduced into the constitutive framework to model the
dependence of the material behavior on its recrystallized state. We describe the microstructure through
internal state variables linked to the grain size as followed by Busso (1998) and Dunne et al. (1997). The
evolution of the equivalent tensile plastic strain is specified via the following functional form:

e f<&,s,9,LLO) (2.12)
where L, is the initial mean grain size, & is the equivalent stress, s is the state variable denoting the
deformation resistance, 0 is the absolute temperature and L denotes the mean grain size. Before we proceed
with the detailed analysis of the constitutive model, we describe, for clarity, some of the terms to be used in
the following text. As discussed earlier, emphasis is here given to grain refinement and growth during
dynamic recrystallization in materials. We herein define primary recrystallization as the region of recrys-
tallization that mostly involves grain refinement and secondary recrystallization as that region which in-
volves grain growth. Prior to the onset of primary recrystallization, we assume L = Ly and hence Eq. (2.12)
reduces to the form where strain rate sensitivity is independent of grain size.
The evolution of the isotropic scalar resistance s is assumed to take the form:

5 =g(6,s,0,L) = h(G,s,0,L) —iG,s,0,L) (2.13)

where 7(7,s,0,L) is a dynamic recovery function (recovery during deformation) associated with recrys-
tallization, which describes the annihilation rate of dislocations and is responsible for the nucleation of new
grains. The function %(d,s, 0, L) is associated with deformation processes and is interpreted as the rate at
which the average dislocation density evolves (increases/decreases) in the material.

2.2.1. Hardening law
The hardening rate is defined as follows:

h(G,s,0,L) = h(s,s*,5,0,L, L) (2.14)

where s* represents a saturated or steady state condition. This law also needs to allow for strain softening due
to a sudden increase in local temperature. A functional dependence of s* consistent with the behavior that a
decrease in mean grain size causes the steady state dislocation density and hence s* to decrease is the following:

s* :s*<£,ép,0) (2.15)
Ly

Experimental evidence suggest that the time scale associated with primary recrystallization is much smaller
than that required to reach a stable dynamic state. This dynamic balance is a concept implicit to our
analysis of the evolution of the deformation resistance. We assume that the deformation resistance reaches
a saturation state and this occurs only if there exists a dynamically stable state between grain refinement
and growth. We then let L* be the mean grain size when such a dynamically balanced state exists, then the
above equation can be modified, accounting for the above mentioned time scale effect as follows:

L.
s :s*<L—O,gP,9) (2.16)

2.2.2. Dynamic recrystallization recovery law
The driving force for recrystallization is known to be supplied by the stored energy towards the
nucleation of new grains both within the interior of the grain and at the grain boundaries. A general form of
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the dynamic recrystallization recovery function with this driving force given in terms of the deformation
resistance, s — sy, is the following:

#(5,8,0,L) = fxXz(5,5,L,0)(s — 5,)& (2.17)

where fr is a material parameter which defines the magnitude of recovery, s, is the deformation resistance
at the end of primary recrystallization and the function Xz represents the volume fraction of the recrys-
tallized material associated with the current state (s, L). Expression for Xz can be motivated by the classical
treatment of the kinetics of grain growth, as is done in this effort. We further denote, for convenience,
Xz(G,5,L,0) by Xg.

2.2.3. Kinetics of grain growth
The evolution of the average grain size during and immediately after primary recrystallization (during
dynamic recrystallization) is considered to be governed by the following equation:

=1(6,s,L,0) = Lot —l—Lgmw (2.18)

where Ly is a function that describes the overall grain refinement taking place during primary recrystal-
lization and Lgmw represents the kinetics of grain growth process driven by grain boundary energies during
secondary recrystallization. L. is driven by the dynamic imbalance between nucleation and grain growth
events, (L — L*), and is given as follows:

Lt =—faXp<L—L =& (2.19)

where f3 is a material constant and < x > denote x if x > 0 and 0 if x < 0.
Grain growth is now characterized by the following equation:

Lyrow = Lo(1 — exp(— < X — Xz, >=)) exp ( 1;20) (LO) (2.20)
where L is a material constant, the Arrhenius and inverse terms account for the increase in grain boundary
mobility for increasing temperatures and decreasing mean grain sizes, and Xg. is the volume fraction
recrystallized at the end of primary recrystallization (i.e., the end of the refinement process).

Recrystallization can be treated as a localization phenomena and the critical strain for the onset of
recrystallization is given by

- 2 G }
Egzﬁz(ch —S()) (221)

and &, the strain needed to complete strain softening and leaving the material in partially recrystallized
state, is given by

- 2 CR
&= \/_ st

where C., Cy, fc are material parameters and f] is a function measuring the dynamic imbalance.

(L, L) (2.22)

2.3. Time integration of the constitutive problem

A brief review is presented here of the radial return algorithm implemented for the integration of the
constitutive problem. In the incremental constitutive problem, one evaluates the set (T, 1,511, Lys1, F¥ 1)
with the body configurations at time t,, #,,1 and the set (T,,,s,, L,, F*, 0,,1) known. Considering a backward
Euler technique for the time integration of Egs. (2.8), (2.13) and (2.18), one can obtain the following:
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F°,, = exp(AD}, ) F" (2.23)

Spt1 = Sp + Atg(&nﬂ y Sn+1y Gn+l 7Ln+l) (224)
and

Ln+1 = Ln + Atl(6n+17sn+la 071+17Ln+1) (225)

We introduce a trial elastic deformation gradient, F;, defined as F; = F.F, = R{U;, where F, has been
defined earlier. We then define the trial stress as T, = #°[E.|. The equivalent trial stress is defined, from the
deviatoric part of the trial stress, as follows:

G.=\3T. T, (2.26)
and the pressure is defined as
De = —%trT* (2.27)

Following similar steps to the derivations in Weber and Anand (1990), it can be shown that 7; and 7; 4 are
in the same direction:
- 3T,
Nup1 =14/z=— 2.28
n=\57 (2.28)
Thus only the scalars, 6,1, $,.1, p.+1 and L, | need be evaluated. It can further be shown that p,,; = p, and
that G,., is governed by the following scalar equation:

&n-H - 6-* + 3At:uép(6n+lysn+17 9n+17Lr1+1) =0 (229)

The evolution equations for the deformation resistance s,,; and the mean grain size L,,; along with the
relation for the equivalent stress 6, (i.e., Egs. (2.24), (2.25) and (2.29)), are solved simultaneously, within a
time step, using a Newton—-Raphson procedure incorporating a line search algorithm. This was found to be
very efficient for material models considered in the examples to be discussed later.

With these values of parameters, we can update the Cauchy stress as follows:

T =exp () RT, 0 (R (2.30)
K
with T,,, = 5,,,T., where 1, is the radial return factor defined as Tst,

2.4. Kinematic, contact and thermal problems

The augmented Lagrangian formulation of Laursen and Simo is used to model contact and friction. This
implementation of contact is discussed extensively in Srikanth and Zabaras (1999b). A radial return type
algorithm (described above) is used for the time integration of the constitutive equations. The solution of a
generic loading increment involves the solution to the principle of virtual work (PVW) given as follows:

/ P.(F,) - V.adV; :/ A-udd,+ | f-udl; (2.31)
P 0B; P

for every admissible test function # expressed over the reference configuration %,. The vector 4 is the
current contact traction expressed per unit area in I’ C 0%4,. The weak form is solved in an incremental-
iterative manner as a result of material as well as geometric non-linearities. The FEM is used for the
solution of the weak form and bilinear quadrilateral elements are used along with the assumed strain
analysis described in Srikanth and Zabaras (2001).
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In the absence of external heat sources, the balance of energy in the current configuration, takes the form
shown below (thermal sub-problem):

o0

pca—t =W meech — Vsl 4 (2.32)
The isotropic constitutive equation for the heat flux ¢ is given by Fourier’s law as follows:
q = _KV}H—IQ (233)

where the conductivity K(6,L) > 0. The mechanical dissipation # e is usually specified in terms of the
plastic power by the following empirical law:

W oeen = 0T - D' = w5e® (2.34)

where w € [0.85,0.95] is a constant dissipation factor that represents the fraction of the plastic work that is
dissipated as heat. In this work, the non-dissipative latent heating is considered negligible in comparison to
the mechanical dissipation # . An implicit Euler backward time-stepping scheme is used together with
the classical Galerkin finite element formulation towards the solution of the thermal sub-problem.

3. Process optimization and its relation to the continuum sensitivity approach

Metal forming process design includes the control of complex, non-linear deformation mechanisms in
order to achieve a desired objective that could consist of various criteria like, minimum work, desired shape
or uniform deformation in the product and/or desired microstructure in the product. In this design pro-
cedure, we assume that the forming sequence is identified a priori and we focus on selecting the optimum
design parameters in each of the operations/stages that make up the sequence. We introduce a gradient
based optimization framework and the evaluation of the gradients of the objectives functions and con-
straints is performed through an innovative continuum sensitivity method (CSM) that is described next.

3.1. Definition of sensitivity in a continuum sensitivity framework

We briefly summarize the definitions of shape and parameter sensitivity of a Lagrangian field Q, used in
an updated Lagrangian (UL) framework. Sensitivity of any deformation or material state related field is the
quantitative measure of the change in these fields as a result of infinitesimal perturbations to the process
parameters (called parameter sensitivity), f,, or parameters that define the shape of the body (called shape
sensitivity), B,. Let B, (B in general for both shape as well as parameter sensitivities) denote the design
variables related to process conditions which could be for example the die surface or the deformation rate.
The dependence of the Lagrangian field Q = Q(x,,) on B, can be expressed as follows:

Q= Q(x,,1;B,) = Qx(X,1;B,),1;B,) = AX, 1 8,) (3.1)

The parameter sensitivity - E)(xn,t; B,,AB,) is then defined as the total Gateaux differential of
Q = Q(x,,t; B,) in the direction A, computed at B, ie.,

o~ ~

o

5 d ~
Q(x, 15 By, ABy) = QX 15 By, ABy) = - Q(X, 15 B, + AABy) (3.2)
=0

o~

The shape sensitivity Q = Q(x,, ; B, AB,) is defined (in a similar fashion to the parameter sensitivities) as

the total directional differential of Q = SAQ(x,,, t; B,) in the direction AB, (perturbation to the design vector)
computed at B, (shape design vector)
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Fig. 1. Schematic of the continuum sensitivity algorithm in a generic forming stage.

o~ ~

Q1 B AB) = (X, 1B, AR) = OV 5B, AB) = OV, 1, + 7AR,)

(3.3)

2=0

where Y is the material point in the design independent, reference material configuration %, which results
in the various initial configurations (preforms) %, through a smooth, bijective, design-dependent mapping.
This necessarily follows a domain parameterization approach in order to monitor the variation in the field
due to the variation in the initial shape of the body. Specific information on shape and parameter sensi-
tivities can be obtained from Ganapathysubramanian and Zabaras (2002, 2003), Badrinarayanan and
Zabaras (1996), Zabaras et al. (2000), and Srikanth and Zabaras (2000). A definition of sensitivity fields in
the context of a multi-stage forming process is given in Zabaras et al. (2003). The sensitivity framework
adopted here is based on the design-differentiation of the direct continuum equations. This continuum
sensitivity method (CSM) approach differs from other sensitivity methods available in the literature in that
most methods are based on a design-differentiation of the discretized direct problem. Fig. 1 describes the
various sub-problems involved in the CSM.

3.2. Sensitivity kinematic problem

In this section, the equations governing the sensitivity fields are computed at the continuum level. The
sensitivity of the equilibrium equation is directly considered so as to establish a principle of virtual work
like equation for the calculation of the sensitivity of deformation fields (Srikanth and Zabaras, 2000, 2001).
Consistent with the above analysis, the sensitivity constitutive, sensitivity thermal and sensitivity contact
equations are derived from the corresponding continuum equations rather than their numerically integrated
counterparts. The sensitivity deformation problem is developed on the reference configuration %,. The
design differentiation of the equilibrium equation (2.10) results in the following:



2020 S. Ganapathysubramanian, N. Zabaras | International Journal of Solids and Structures 41 (2004) 2011-2037

V.- P, +} =0 Vx, € B, VtE [ty ty1] (3.4)
A variational form for the sensitivity equilibrium equation can be posed as follows (with the derivation

following a similar procedure as that presented in Srikanth and Zabaras, 2000): calculate x = fv)c(xn7 t; B, AB)
such that

Br B By

0%,

{i L (N N)]/l} idd,
(3.5)

for every 5, where 5 is a kinematically admissible sensitivity deformation field expressed over the reference
configuration %,. Also here, B is the design vector (can represent either f, or B), Ap represents a per-

turbation to the design vector, IV is the unit normal in 0%, and L, = Vr;c(xr7 t;B,Ap) = F.F_ ! refers to the
design velocity gradient. In the case of parameter sensitivity analysis, the design velocity gradient at time ¢,
Ly=0. In the case of shape sensitivity analysis, the design velocity gradient at time 1,

Ly=VX(X;B,,AB,) =F RF,;l. The solution of this variational sensitivity problem involves evaluating the
key relationships between IO’r and [l%‘ +, 8] which is part of the constitutive sensitivity problem and between i
and x, which is described by the sensitivity contact problem.

The relationship between P, and [x, 0] is linear and is denoted as follows:

P, = 4[F)+%0+% (3.6)

where o7 is a fourth order tensor and %, % are second order tensors, to be evaluated. These tensors will be
shown to be constants, defined from known direct fields at the current time and sensitivity fields at the
previous time step (see Section 3.3). The relationship between 4 and x is non-trivial and obtained from the
sensitivity contact problem as (Zabaras et al., 2000)

A=D[x]+d (3.7)

where D is a second order tensor and d a vector.
3.3. Sensitivity constitutive problem

In this constitutive sensitivity problem, the relationship between T and F, | and 0, as required by the
solution of the sensitivity thermo-mechanical problem is computed. As part of the update procedure, one

further computes the set [T, s, L, F°] at the end of the time increment #,,; when the sensitivity of the total
deformation gradient F,,; and the sensitivity of the temperature field 0,,; are given (evaluated). The
sensitivity of the mechanical dissipation # e 1S also computed as it is part of the driving force for the
thermal sensitivity problem at time ¢, .

The solution of the direct thermo-mechanical problem is known at time ¢, i.e., the set [T, s, L, F°], the
body configuration %, as well as the temperature field 0, are known at #,,,;. Due to non-linear material
response, the constitutive sensitivity problem is history dependent and the solution of the sensitivity

problem at time ¢, is assumed known, yielding the variables [T ,§,L,;’e] at the beginning of the time
increment (¢ = ¢,). It has been shown that the deformation sensitivity response does not explicitly depend
on the history of tlge temperature sensitivity but is dependent only on the instantaneous temperature
sensitivity response 0,,; (Ganapathysubramanian and Zabaras, 2002). The solution of the sensitivity sub-
problem is advanced within the incremental solution scheme by integrating the evolution equations for the
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sensitivity of the plastic and thermal deformation gradients, the evolution equation for the sensitivity of the
state variable s and the grain size L. As part of this sub-problem, the linear relationship between T and [F, 0]
at time ¢,, is computed. This relationship will be used to compute in Eq. (3.6) the constants .«7, # and € as
needed in the solution of the sensitivity thermo-mechanical problem (Eq. (3.5)). The time integration
scheme presented here is an Euler-backward time stepping algorithm.

o

3.3.1. Calculation of the linear relation between F, , and [F¢_ ,, 0,,,]
The evolution equation for FP is given as, FP(FP)~' = D", assuming that the plastic spin W* = 0. Let us
consider the design differentiation of this evolution equation. The sensitivity of the plastic stretching rate,

Dr, specifies completely FP (we herein drop the subscript (n+ 1) for convenience):

Op __ .0 °
% =D°F° + D°F? (3.8)
DP can be computed by taking the design-derivative of the flow rule (Eq. (2.9)):
o 3 @05 3ok Sy g D fig 39
2 G 2 G

o

where the subscripts denote partldl derlvatlves and T is the deviatoric part of the sensitivity of the rotation

neutralized Cauchy stress, T and & is the sensitivity of the equivalent stress, i.e.,

T = ,,(Zc[Fe] (3.10)
°o 3 T’ T
T2 % . ] (3.11)
One can further show that E° is linearly related to F¢ as follows (Badrinarayanan and Zabaras, 1996):
AU+ 1)U+ 1) (3.12)
U = sym{(Ue)lsym<(Fe)TloVe) } (3.13)

Thus from Egs. (3.9)-(3.13), one can conclude that DP depends explicitly only on Fe and not on Fp

The evolution equation for s and L is obtained by design differentiation of the evolution equation for the
state variables (2.13) and (2.18):

o

0 ° o ° °
a—j=g50+gss+g99+gLL (3.14)
62 o o ) o
P 156 + 1+ 1,0 + [ L (3.15)

The functions describing the evolution of the state variables, i.e., the deformation resistance and the grain
size, are taken in this effort to be smooth enough to ensure differentiability. Any discontinuity/non-
differentiability of these functions will need to be addressed through regularization.

The evolution equation for Io’ % is derived as follows (Ganapathysubramanian and Zabaras, 2002):

FO(F) ™ = gor (3.16)
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An Euler-backward integration scheme over (#,,,.1) applied to the evolution equations for the sensitivities
of the plastic deformation gradient (Eq. (3.8)), scalar state variables (Egs. (3.14) and (3.15)) and thermal
deformation gradient (Eq. (3.16)) yields:

e Sensitivity of the plastic deformation gradient at time ¢,,:

FP(F)™ = AFPFP(F?) " (AFP) ™ + AD” (3.17)

n+1

where from the constitutive sub-problem of the direct problem,
AFP = FP(F?)"' = exp(ArD") (3.18)

with At = £, — t,.
e Sensitivity of the scalar state variable s at time ¢, :

1 (ga)At o (go))At o  (gL)At

o _ 0” 1
ST M) T Mg T Adg) T Adg) 19
e Sensitivity of the scalar state variable L at time ,,:
°o o 1 (I;)At o (IHAt o (Ip)At
L=1L 0 3.20
Ay T T=a) T T a) T T = A (3:20)
From the above two equations, Spe1 and Z,Hl can be evaluated as follows:
s =m —|—m2c37—|—m3z), Iiznl +n2<37+n32) (3.21)

where my, my, ms, ny, ny, n; are constants that can be evaluated by solving the above mentioned system.
o Sensitivity of the thermal deformation gradient at time ¢,,; (Ganapathysubramanian and Zabaras,
2002):

F' = BOF’ (3.22)
Substituting Egs. (3.9) and (3.21) in Eq. (3.17), one finally obtains that
FP(FP) ' = Cpii + api T + byt 6T + 01 OT (3.23)
where
° _ 1 3A¢ = 3f At
C,,+| :AFp(Fs(FE) 1)(AFP) 1+ﬁ(ﬂml +anl)T7 Apt1 zg—&a
&(Fs) — (3.24)
po 2B e )3 (s o
2 G G G 2 G G

Eqgs. (3.23) and (3.24) together with Eqgs. (3.10)—(3.13) completely define the linear relation between IOVE .l
and [F;_ |, 0,.1].
3.3.2. Calculation of the linear relation between 1075 and [ 107,1“, 5,,“ ]

Starting from the multiplicative decomposition of the deformation gradient, one can write (dropping the

subscript (n + 1))

F = FFPF { FFFPF' 4 FFFPF' (3.25)
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Hence,

(F) ' (FF")F* = (F*)"'F* + FP(F*) ™" + 01 (3.26)
Using Egs. (3.13) and (3.10), it has been shown that T, . and <37,1+1 linearly depend on IO"Z .1~ Therefore
substitution of Eq. (3.23) in Eq. (3.26) results in a linear relation between F¢ and [F, 6]:

(F) " (FF')F* = Cpyy = (F) 'F + a,\ T + by 16T + [cans T + IO (3.27)
The linear relationship above can be expressed as (incorporating the subscript (n + 1))

F:Jrl = tQ{( V'1+1)[Fn+l] + A(Vn+17 Vn) + B( Vn+1)0n+1 (328)

where 4 and B are second order tensor functions, .7, a fourth order tensor function and V = [T, s, L, FP].

o

3.3.3. Calculation of the linear relation between “/OV mech and [ IO*" wily O]
Using Eq. (2.34), we can compute ¥ e, as follows (once again, we drop the subscript (n + 1)):

Womeer = O(Gf + 1) = O(f + 5,6+ 35+ 5fl + 5£,L] (329)
Using the elastic moduli from Egs. (2.7), (3.10) and (3.11), one can prove the following:
e T (3.30)
G G
and
o . T —_— ~20
§— 3G T) = 2ucrnc0 (3.31)
5(1+ 20y + 6bur1))
where G is the LHS of Eq. (3.27). .
One finally obtains the following expression for # meen at f,.1:
Wmech,nJrl = K( Vn+1) : Fn+1 + kl ( Vn+17 Vn) + kZ(Vn+1)0n+1 (332)

where K is a second order tensor function and k, k, are scalars. The sensitivity thermal problem and the
contact sensitivity problems are dealt the same way as described in Ganapathysubramanian and Zabaras
(2002).

The next section deals with numerical analysis and involves the comparison of the direct solution with
results available experimentally. A validation of the sensitivity analysis is also provided and several design
optimization problems are addressed. More details on how the present methodology can be incorporated in
a multi-stage process design can be obtained from Zabaras et al. (2003).

4. Numerical accuracy studies and design examples

Some numerical examples are considered to validate and study the performance of the proposed direct,
sensitivity and design algorithms. The computations were performed using Intel processors on the Cornell
Theory Center’s AC? Velocity configuration. In all reported axially symmetric simulations, the a priori
stabilized F-bar method with a stabilization parameter ¢ = 10~% was implemented for 4-noded quadri-
lateral elements (Srikanth and Zabaras, 2001). The die is assumed to be fixed and the workpiece moves
towards the die with a prescribed velocity in all the following examples. The workpiece material is taken to
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be 0.2% C Steel (cast) at an initial temperature of 1213 K, with a mean grain size of 91 um. The specific
constitutive model used is defined by Egs. (2.12), (2.13) and (2.18). The specific values of the mechanical
and thermal parameters are given in Table 1. In the various optimization problems defined in the examples,
a penalty method was used to convert a constrained optimization problem to an unconstrained one.
Furthermore, a quasi-Newton type algorithm was used to solve the unconstrained problem and the BFGS
scheme (Nocedal and Wright, 1999) to update the Hessian of the objective function. In the examples to be
considered, the following thermal boundary conditions were imposed. Convective boundary conditions are
imposed on all free surfaces, i.e., surfaces other than symmetry axes, that are not in contact. The convective
heat transfer coefficient is taken as # = 6.7 W/(m? K). The ambient (atmospheric) temperature is taken as
298 K. For simplicity, the die is assumed to be rigid and no heat transfer is considered between the die and
the workpiece.

In the following examples, upset forging between parallel dies of a right cylindrical billet (axisymmetric
analysis) is considered. A sample optimization problem is described in Fig. 2 (Ganapathysubramanian and
Zabaras, 2003). Further, the various die and preform shapes were approximated with Bézier curves and the
design variables were selected to be the corresponding scalars in these approximations. The free surface of
the preform shown in Fig. 2 and labelled, Rg(), is represented with a degree six Bézier curve (with seven
Bernstein basis functions). Using the restriction on the slope due to symmetry, i.e., Ry(0) = 0, the repre-
sentation of Ry can be defined with six independent design variables f5;, i = 1,...,6 as follows:

6

Rp(0) = Bipi(w), Z=151,  0<a<l (4.1)

i=1

where Z represents the axial coordinate and the Bernstein basis functions are given as

Table 1

Material parameters for 0.2% C steel at 1213 K (Busso, 1998)
Material parameter Value
& 2.618x 10" 57!
2 283 kJmol™!
u 57.69 GPa
K 125.0 GPa
K 32.5 N/(sK)
pc 4.884 MN/(m? K)
) 0.90
Ly 91.0 um
w 2.9
{ 0.308
n 0.11
So 150.0 MPa
x 431 MPa
hy 7800
a 1.55
ny 0.069
T 120
fc 0.728
Cr 59
C. 59
D 0.8
q 5 Nmm?~2
fx 1.0

Lo 6.0x10° ms™!
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Fig. 2. A schematic describing a hypothetical preform design problem along with some possible optimization objectives.

¢ =(1.0—2)>(1.04+500), ¢ =1501.0—a)'a®,  ¢;=20.0(1.0— ),
by =15.0(1.0 — a)’a*,  ¢s=6.0(1.0—a)’,  Pg=0°

4.1. Specific material characterization

The specific constitutive model chosen is presented in Busso (1998). The material chosen for the analysis
following this section (0.2% C steel) has the evolution of the equivalent plastic strain (Eq. (2.12)) defined as
follows:

& = &exp (;—f)(%)vvlsinh (%)]l/m (4.3)

where the material parameters are defined in Table 1. The evolution of the deformation resistance, i.e., the
hardening law is defined by the following equation:

~ o 7& s . 71 “p
h(@,5,0.L) = h[1 = > "sign(1 - 2 )é (4.4)

where s*, the dynamically stable value of s, is defined as

s*;x{é—exp (E)(L—()) } (4.5)
0

where y and n, are material parameters.
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The kinetics of grain growth are defined through the evolution of the mean grain size as

. . . 2 L

L= _‘fRXR <L—-L" ¢ +L0(1 — exp(— < XR _XRc >‘)) eXp (- ]@) (f()) (46)
where fz, Ly are material constants and X denotes the volume fraction of grains recrystallized. The volume
fraction of grains recrystallized is given through the following expression:

XR =1- eXp{—ALLrectR} (47)

where 7 is the recrystallization time, 4, is the mean grain and sub-grain boundary area per unit volume
which is active and capable of nucleation, and L. the mean rate of grain refinement during recrystalli-
zation. The above expression is simplified to obtain (Busso, 1998):

XR:I—exp{—fxig<Epgf%>} (4.8)

Furthermore, the critical strain for the onset of recrystallization is given by

- 2 G,y
where C,, fc are prescribed material parameters. In addition, ¢ is given by
- 2 C LY — L
62=§7R56‘< (T) - (4.10)

Additionally, an implicit relation (Busso, 1998) for the dynamically stable recrystallized mean grain size
in terms of the strain rate, the absolute temperature and the initial grain size is given as follows:

1/p -1/,
* q ny 2n P
L —(—ngnz) {ln(A +/4 1+1)} (4.11)
where
& L 2

A Newton type iterative procedure is used to evaluate L* given the values of ¢, 0 and L.
4.2. Verification of direct analysis ( Example 1)

A simulation is performed to obtain the uni-axial stress—strain response of the material at different strain
rates. These strain rates were chosen to be exactly those used in Busso (1998), so that an accuracy check can
be performed with the reported experimental results. These rates are 2.8 x 1074 4.5x 1073, 1.8 x 1072 and
0.15 s7!. The measured grain size as well as the predicted grain sizes for 0.2% C steel are summarized
in Table 2. In addition to the evolution of the mean grain size, the stress—strain response is also shown in
Fig. 3. The proposed theory clearly describes a rapid decrease in mean grain size following the onset of
primary recrystallization for the higher strain rates. In addition, a good agreement of the steady state values
of the grain size is observed for these strain rates. It is, though, observed that the model prediction for low
strain rates is not accurate. One plausible reason for such behavior is that the mean grain size does not
attain a quasi-steady state value towards the end of primary recrystallization (involves multiple peak
recrystallization according to Busso, 1998). In other words, recrystallization is much lower than grain
growth when it should have been the other way around.



S. Ganapathysubramanian, N. Zabaras | International Journal of Solids and Structures 41 (2004) 2011-2037 2027

Table 2
Measured and predicted mean grain sizes (in pm) for 0.2% C steel (cast)
Strain rate (s7!) 0.2% C steel
Measured Predicted
0.15 45.8 40.2
1.8x1072 51.9 47.7
4.5x1073 55.9 57.1
2.8x107* 56.2 102.1
120
. 110 f
I 100
g o1 2.8E-04,0.2% C Steel . 90;‘
ks ¢ 80F
E S F 1.5E-01, 0.2% C Steel
5 @ 70
(> 2 F
& = 60F 1.8E-02,0.2% C Steel
a 45E-03,0.2% C Steel 8 5F ASE0s o oo
: X LR’ =
5 0.05 = 40
5 \ 1.8E-02, 0.2% C Steel ] b
8 |
= | 15E-01, 0.2% C Steel s0F 2.8E-04, 0.2% C Steel
| 20f
| 10F
Oxxxxlxxxxlxxxxlxx 0:111111111111111111111
0 0.1 0.2 0.3 0 0.05 0.1 0.15 0.2
Equivalent strain Equivalent strain

Fig. 3. The predicted evolution of the mean grain size and the material response in uni-axial tension at various strain rates (Example 1).

4.3. Validation of the thermomechanical sensitivity analysis ( Example 2)

This section involves the validation of the shape sensitivity analysis for a thermo-mechanical process by
a comparison with the forward finite difference method (FDM). Upset forging is considered between
parallel flat dies of a cylindrical billet (axisymmetric) 2 mm in diameter and 3 mm in height. The initial billet
was subject to a large height reduction of 33.34% in 500 s using a fixed time step of A = 1.0 s at a nominal
strain rate of 0.001 s~!. The preform free surface is represented as in Eq. (4.1). The shape parameters in the
reference preform (cylindrical billet) are f; = 1.0 mm, i = 1,..., 6. Shape sensitivities are taken with respect
to the free surface shape which is altered by perturbing the design variable ;. Analysis is performed using
the UL formulation with the coefficient of friction taken as 0.4. Fig. 4 depicts the distribution of the
equivalent stress, equivalent scalar state variable, temperature, mean grain size and the fraction recrys-
tallized in the deformed workpiece at the final time, # = 500 s. This solution defines the reference solution at
which the sensitivity fields will be computed for a specified perturbation in the design variables.

Figs. 5-7 show at ¢ = 500 s the shape sensitivity of the state variable, temperature and the mean grain
size, respectively, using the CSM and FDM sensitivity computations.

The FDM sensitivity results are obtained using the results of the direct analysis and a forward difference
approximation for a perturbation of the design variable, f8;, by AB; = 10~% mm. Thus these results validate
the proposed continuum sensitivity analysis.
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i/L » < 4 ®

/ ’\é—J

5 Equivalent stress Scalar state variable

-6 (MPa) (MPa)
8 5.45E+01 1 8 3.01E+02
7 5.04E+01 7 2.84E+02

-8 o 6 4.63E+01 6 2.67E+02
5 4.21E+01 5 2.50E+02
4 3.80E+01 4 2.33E+02
3 3.39E+01 3 2.16E+02
2 2.98E+01 2 1.99E+02
1 2.57E+01 ® 1 1.82E+02

-1 —ﬂ{
,Jq/ J%
—5—"} >y Mean grain size
'3; Temperature (K) (mm)
8 1220.06 2 ~ 8 8.79E-02
7 1219.00 7 8.26E-02
6 1217.94 6 7.74E-02
5 1216.87 5 7.21E-02
4 1215.81 4 6.68E-02
3 1214.74 3 6.16E-02
2 1213.68 2 5.63E-02
1 1212.61 1 5.10E-02

Fig. 4. Solution of the reference problem: the spatial variation of the equivalent stress, scalar state variable, temperature and grain size
at ¢+ = 500 s (Example 2).

4.4. Design optimization examples using the CSM

4.4.1. Preform design in open-die forging to minimize barrelling and the deviation of the mean grain size
( Example 3)

The objective here is to design the shape of a cylindrical preform of height 3.0 mm and fixed volume, that
when compressed with a flat die in an open-die forging process yields a circular cylinder of radius ry = 1.224
mm and height 2.0 mm, i.e., a final product of a given height with no barrelling. In addition, we are
interested to minimize the deviation in the mean grain size in the entire workpiece. The initial design
(preform shape) is chosen to correspond to that of a right circular cylinder with uniform radius 1.0 mm
(computed assuming volume conservation during deformation). The free surface Rg(«) is represented with a
degree 6 Bézier curve as given in Eq. (4.1). The finite dimensional optimization problem is posed as follows:

N, b N,
MO 2, AN 2
fn T _ i i
min 7 (B) = - > (X} (B) — o) A > (L'(B— =< L(B) >) (4.13)
B 1 = 2 =
i=1 i=1
(a) FDM
Z o)
4 @ 1
Sensitivity of scalar
w \ ¢ stalevar%ble(MPa) 3‘2“:"5’;}%&;‘:‘(‘3?;)
o A 8  2.63E-04 8  2.63E-04
e 3 7 164E-04 7 165E-04
6  6.56E-05 6  658E.05
5  -3.31E-05 5  -3.29E-05
4 -1.32E-04 4 -1.32E-04
o7 % 3 -2.31E-04 3 -2.30E-04
2 -3.29E-04 2 -3.29E-04
1 -4.28E-04 1 -4.28E-04

Fig. 5. Shape sensitivity of the scalar state variable at t = 500 s computed using the FDM and CSM methods (Example 2).
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() FDM (b) CSM

6 ‘

;:/\/v
Sensitivity of <7 (’;
temperature (K) Q Sensitivity of
8 1.01E-04 temperature (K)
7 6.79E-05 | o Q 8  1.01E-04
6  3.47E-05 o, 7 6.81E-05
5  1.57E-06 3 6 34905
4 316E-05 5 A1 5 LE9E0S

4 -315E-05

3 -6.47E-05 / 3 -6.47E-05
2 -9.79E-05 A 2 -9.79E-05
1 -1.31E-04 © 1 -1.31E-04

Fig. 6. Spatial variation of the shape sensitivity of the temperature at # = 500 s computed using the FDM and CSM methods
(Example 2).

n Sensitivity of mean <>y A
grain size (mm) Sensitivity of mean

%) |
| — [y 8 3.1E-07 & grain size (mm)
2.3E-07 —

1.5E-07

6.6E-08

-1.6E-08 >
-9.7E-08 v
-1.8E-07
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6.6E-08
-1.6E-08
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-1.8E-07
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%

Fig. 7. Spatial variation of the shape sensitivity of the mean grain size at = 500 s computed using the FDM and CSM methods
(Example 2).

where p={f,,...,Ps} and N, N, refer to the number of nodes on the free surface of the final product
(which can vary between optimization iterations). The total number of measuring points for the grain size
is here taken as the total number of Gauss integration points. 4;, 4, are taken as 1.0E + 04 and 1.0E + 06
mm~2, respectively, by considering the ratio of the two objectives at the end of the initial deformation
problem. The initial and all subsequently obtained preforms were discretized with a 6x8 mesh for the
quarter geometry shown in Fig. 8. The variation of the objective function with the iteration index is shown
in Fig. 9. The optimal preforms and the product obtained is shown in Fig. 10. Also shown in Fig. 11 is the
variation of the variance of the mean grain size with optimization iterations.

Mean grain size (mm)
0.090

0.084
0.078
0.072
0.066
0.060
0.054
0.048

PNWROON©

Fig. 8. Guess preform and grain size distribution in product for the thermo-mechanical preform forging design problem (Example 3).
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Fig. 9. Variation of the objective function versus the optimization iteration (Example 3).
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Fig. 10. Optimal preform and grain size distribution in final product for the thermo-mechanical preform design problem (Example 3).

PNWROON

4.4.2. Die design for extrusion (Example 4)

This problem involves the design of the extrusion die shape so as to minimize the deviation of the grain
size at the exit. Here, we design an extrusion process with a die of area reduction of 12.0%. The initial radius
of the workpiece is 0.5 mm. It was extruded with a nominal displacement rate of 0.001 s~!. A total of 600
time steps were performed to reach steady-state conditions at the exit. A coefficient of friction of 0.01 was
assumed at the die—workpiece interface. The symmetry of the problem allowed modelling only half of the
geometry. The die surface is represented by a degree six (n = 6) Bézier curve as follows:

n+1
r0) = Cip(x), z=03z inmm 0<a<] (4.14)
i=1
where C;,i = 1,...,(n+ 1), are the algebraic control parameters. The Bernstein functions ¢,(o) are given as
b =010-2)° ¢, =601.0—0) 0,  $3=150(1.0—a)*
by =20.0(1.0 —0)’’, ¢y =150(1.0 —a)o*, s =6.0(1.0— )0, ¢, =0 (4.15)

In order to obtain the same reduction for different die design parameters, the radius and slope (with respect
to the z-axis) at the inlet and exit are fixed (slope is taken as 0):
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Fig. 11. Plot representing the average variation (in the mean grain sizes through out the final product) with the optimization iteration
index (Example 3).

C; =0.5 mm (4.16)
C; = 0.46 mm (4.17)
C, =G (4.18)
Co=C; (4.19)

With this selection of parameters, there are three die design parameters left. The initial (reference) values
are arbitrary and are selected as C; = 0.475, C, = 0.475, and Cs = 0.475 (all of them in mm).
The finite dimensional optimization problem is posed as follows:

. 1 K,
min 7 (§) = 5 > _(K(B)= < 1(B) =)’ (4.20)
i=1
where B = {f,,..., 5}, I' is the non-dimesionalized mean grain size (non-dimesionalized using the initial

grain size of 91 um). The area of interest is defined as the volume at the exit (specified radius 0.45 mm),
every point of which has a z-axis coordinate of greater than 0.3 mm. N refers to the total number of
sampling nodal points in the region of interest. A perturbation of 1073 mm is used for evaluating the
sensitivities with respect to the die shape.

Fig. 12 shows the variation of the die shape with iterations. The variation of the objective function with
the iteration index is shown in Fig. 13. In Fig. 14, we compare the grain sizes of the extruded product at
various iterations—i.e., with different die shapes. The maximum grain size and the average grain size in the
product obtained using the guess die shape was observed to be approximately 234 and 130 pum, respectively.
Thus the guess die shape leads to a huge increase in grain size in the extruded product (from an initial grain
size of 91 um). This leads to a large variation in the mean grain size in the extruded product. In the product
obtained using the optimum die shape, an average grain size of 144 pm and a variation of about 80 pm was
observed. The variance is nearly halved as seen in Fig. 13 that presents the objective function.
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Fig. 12. The variation of the die shape about some iterations (Example 4).
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Fig. 13. The variation of the objective with iteration index (Example 4).

4.4.3. Two-stage forging process design ( Example 5)

This example presents a forging process design for producing an axisymmetric disk in two stages. The
initial billet is a right cylinder of 1.6 mm height and 1.04 mm radius. The height reduction at » = 0, in the
first stage is 0.3 mm and in the second stage is 0.4 mm. A quarter of the billet is modelled in the simulation
and design. The friction coefficient in the preforming and finishing stages is taken as 0.2. The material is
assumed to be 0.2% C Steel at an initial temperature of 1213 K. The material properties are the same as
those used in the previous examples. The design problem involves a preforming stage using a flat die in an
open-die forging process. The finishing stage is a closed die of desired shape. The volume of the billet is
chosen so that the final product occupies the finishing die completely.

The preforming die surface is represented using a degree six Bézier curve with five independent variables.

7

r(0) =09, zg(w) =Y Bihi(2) (4.21)

i=1

The die height at » = 0 was specified and the die shape is assumed to have a zero slope at r = 0. The
following basis functions are assumed:
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Grain size (mm) Grain size (mm)
12 0.1500 12 0.1500
11  0.1436 11  0.1436
10  0.1373 10 0.1373
9 0.1309 9 0.1309
8 0.1245 8 0.1245
7 0.1182 7 0.1182
6 0.1118 6 0.1118
5 0.1055 5 0.1055
4 0.0991 4 0.0991
3 0.0927 3 0.0927
2 0.0864 2 0.0864
1 0.0800 1 0.0800
Initial grain size = 0.091mm Initial grain size = 0.091mm
p)

Grain size (mm)
12 0.1500
11  0.1436
10 0.1373

0.1309

0.1245

0.1182

0.1118

0.1055

0.0991

0.0927

0.0864

0.0800

Initial grain size = 0.091mm

PNWROON®O

Fig. 14. Variation in grain sizes in the extruded product obtained at different iterations during the design process (Example 4).

dr=0-a0)°  dy=6(1—-0) e, ¢3=151—-0a)c® ¢, =20(1 —a)’,
bs =151 —a)’o*, g =6(1—a)d’, ¢, =0 (4.22)

We herein choose fig and f; = 0.9 mm, in order to fix the height and slope at r = 0.
In addition, the finishing die is defined as follows:

rin) =13 *x (1 —1n)

70.6 « 1P +1.35 n € [0,0.08]
—416.2 * (n—0.17 +19 5 €[0.08,0.17]
shape(n) = 1.90 n € [0.17,0.37]

=9 159794 + 42959 =
5119 % P +403.4 * 5
1181 % n € [0.37,1]

We are here interested to design the preforming die shape so that the variation in the grain sizes in the
finished product is minimized. Mathematically, this is represented as follows:
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1 N

min 7 (B) > (L(B) ~L(B))’ (4.23)

B T w %N —
i=1

where w = 8.281 x 1073 mm~2 is the non-dimensionalizing factor, N denotes the total number of Gauss
integration points in the product, L denotes the grain size (in mm) and the (-) is used to represent the
average grain size.

Fig. 15 shows the variation of the die shape during optimization iterations whereas Figs. 16 and 17
present the mean grain sizes in the intermediate preform (product after stage I) and the finished product.
The variation of the objective function with the iteration index is shown in Fig. 18. Quantitatively speaking,
the average grain size in the product obtained using the guess preforming die shape was observed to be
around 64 pm with an average variation of about 40% of the initial grain size. In the product obtained using
the optimal die shape, the average grain size was observed to be about 56 pm and the variation was seen to

be less than 20% of the initial grain size.

Guess shape /

0.885

0.88

0.875

ol
o
3
[N
o

Fig. 15. The variation of the die shape with optimization iterations (Example 5).

Grain size (mm) Grain size (mm)
10  0.0800 10  0.0800
’——/// 9 00783 —)) 9 00783
8 0.0767 8 0.0767
7 0.0750 7 0.0750
6 0.0733 6 0.0733
5 0.0717 5 0.0717
4 0.0700 4 0.0700
3 0.0683 3 0.0683
2 0.0667 2 0.0667
X% 1 0.0650 1 0.0650

Grain size (mm)

10  0.0800

9 0.0783

8 0.0767

7 0.0750

6 0.0733

5 0.0717

4 0.0700

3 0.0683

2 0.0667

1 0.0650

Fig. 16. Variation of the mean grain sizes and the intermediate preform using various die shapes during the optimization process
(Example 5).
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(@) Initial design iteration (b) Intermediate design iteration
Mean grain size (mm) Mean grain size (mm)

12 0.0790 12 0.0790

11 0.0759 11 0.0759

10 0.0728 10 00728

9 00697 9 0.0697

8  0.0666 8  0.0666

7 00635 7 00635

6  0.0605 6  0.0605

A 5 00574 5 00574

4 0.0543 4 0.0543

O 3 00512 3 00512
2 00481 2 00481

1 0.0450 1 00450

Mean grain size (mm)
12 0.0790
11 0.0759
10 0.0728
9 0.0697
8 0.0666
7 0.0635
6 0.0605
5 0.0574
4 0.0543
3 0.0512
2 0.0481
1 0.0450

Q

(c) Optimum design iteration

Fig. 17. Variation of the mean grain sizes in the final product using various die shapes at different stages of the optimization process
(Example 5).

0.012

o
o
=y

0.008

0.006

Nondimensionalized objective function

0.004

ool b b b b b b1
0 1 2 3 4 5 6 7

Iteration index

Fig. 18. The variation of the objective with iteration index (Example 5).

5. Discussion and conclusions

A hyperelastic, viscoplastic constitutive theory for large deformations has been proposed and imple-
mented to describe the evolution of microstructural features at clevated temperatures. It involved
descriptions of the kinetics of the grain size and the evolution of the dislocation resistance during dynamic
recrystallization. As the current study deals only with dynamic recrystallization, the models used cannot
predict the dynamics of static recrystallization. It is also observed that the onset of recrystallization is a
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natural outcome of the evolution equations for the internal state variables, grain size L and the deformation
resistance s. The volume fraction recrystallized is commonly defined by Eq. (4.7) and has been approxi-
mated to Eq. (4.8) in Busso (1998). Further, in Busso (1998), multiple peak recrystallization has also been
analyzed by keeping track of the accumulated plastic strain since previous primary recrystallization. This is
not valid since, the onset of recrystallization is no more an outcome of the state evolution equations alone.
In this effort, multiple peak recrystallization is not considered even though it can be observed in many
materials at low strain rates.

Furthermore, a novel and accurate continuum Lagrangian sensitivity framework was presented for non-
isothermal, large deformations during metal forming processes. The CSM method was validated by
comparing with the results obtained by a forward finite difference scheme. The computed sensitivities were
used in a gradient-based optimization scheme to address a number of hot forming design examples
including preform and die designs for industrial forming processes. Although, most aspects dealt with in
this effort are phenomenological in nature, this work offers a first step and an attractive framework
for future development of computational algorithms of process design for explicit control of the micro-
structure. Future efforts could incorporate static recrystallization, texture effects through the use of dis-
location gradient concepts as well as anisotropy of grain boundary energies.
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