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Abstract

The idea of control of mechanical properties in materials through designer processing techniques is promoted

through this effort, in contrast to the standard control by alloying. Microstructure evolution through dynamic

recrystallization is accurately modelled for the large thermo-mechanical deformation of hyperelastic thermo-

viscoplastic materials. An innovative solution strategy and a computational algorithm are presented for the solution of

the direct deformation problem comprised of the kinematic, constitutive, contact and thermal sub-problems. The

description relies on microstructure based scalar state variables. The formulation follows an approach introduced

earlier by Busso [International Journal of Plasticity 14(4–5) (1998) 319] that considers an instability criterion to define

the onset of recrystallization. The analysis is performed for hot forming processes and the kinetics of grain growth is

controlled by the grain boundary energies and the energy stored through the dislocation density. A finite element

implementation is presented and validated with available numerical and experimental results.

In addition, an innovative computational framework is developed for the design of deformation processes using the

continuum sensitivity method (CSM) incorporating microstructure related state variables. This CSM involves con-

sidering the direct continuum equations, design-differentiating them and then evaluating their discretized form. This

method differs from common sensitivity techniques in which one design-differentiates the direct discretized equations.

The developed method is validated by comparing the computed sensitivities to those obtained through a finite difference

scheme. In addition, a gradient-based optimization framework is developed which uses the continuum sensitivity

method to evaluate the gradients of the objective functions and constraints. The effectiveness of the method is dem-

onstrated through a number of applications in the design optimization of hot forming processes in the presence of

recrystallization and grain growth mechanisms. These examples cover a wide range of applications as they include

parameter design (e.g., die design), preform design as well as multi-stage forming design.
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1. Introduction

It is well understood that the properties of a metal are strongly influenced by its microstructural features

like the grain size and the grain/sub-grain orientation/mis-orientation. During thermo-mechanical defor-
mation processes, materials experience significant microstructural changes which in turn strongly affect

their mechanical properties. The mechanisms of microstructure evolution during thermo-mechanical pro-

cessing include strain hardening, recrystallization and grain growth. The main reason for this renewed

interest lies in the attractiveness of control of microstructural properties in metallic materials by processing

rather than by alloying––the current, expensive industrial practice.

There have been extensive efforts, over the years, to understand the physics behind the evolution of

microstructure. The stored energy was established early as one of the important driving forces behind

recrystallization. Following this, many parameters affecting the process of recrystallization were identified.
In a crystalline solid, the free energy of the material is increased during deformation by the presence of

dislocations. On annealing however, the microstructure and the properties may be partially restored to the

original values by the process of recovery that involves only a partial restoration as the material reaches a

meta-stable state. Recrystallization is a further restoration process wherein new dislocation free grains are

formed within the deformed microstructure. Recrystallization may also take place during deformation at

elevated temperatures and this is termed as dynamic recrystallization. Our emphasis here is primarily with

modelling and control of dynamic recrystallization occurring in metals during hot forming operations.

Recrystallization removes most of the dislocations, but the material still contains grain/sub-grain bound-
aries, which are thermodynamically unstable. Furthermore, grain growth results in the elimination of small

grains, the growth of larger grains (both recrystallized and not recrystallized grains) and the grain

boundaries assuming a configuration of minimum energy. As normally the recrystallized grains are smaller

than the non-recrystallized grains, grain growth essentially leads to the growth of non-recrystallized grains.

This growth of grains is further classified into normal and abnormal grain growth depending upon the

kinetics of the process. In this effort, we constrain ourselves to normal grain growth. The main parameters

which have been identified to affect recrystallization include kinetics, straining rates and temperature. The

key literature, which describes recrystallization, affecting parameters and methods of control include
Cotterill and Mould (1976) and Humphreys and Hatherly (1995). An effort towards the development of a

continuum theory for dynamic recrystallization involves the work by Busso (1998), where a hypoelastic

constitutive framework is used.

Some work has also been performed on the control of microstructure in deformation processes that

include dynamic recrystallization. One recent effort towards design of deformation processes for uniform

microstructure is described in Lee et al. (2000). Here, the design of the die profile is carried out to yield

uniform microstructure (i.e., obtain uniform grain size distribution) in a hot extruded product. The analysis

is based on Yada and Senuma�s empirical equations for recrystallization and grain growth (Yada and
Senuma, 1986) and it involves a rigid, thermo-viscoplastic finite element analysis and considers both static

and dynamic recrystallization. Gao and Grandhi (2000) have also analyzed the problem of microstructure

optimization during hot forming processes. In their effort, a direct differentiation scheme is employed for

evaluating the sensitivities for a material (Waspaloy) undergoing dynamic recrystallization. Malas et al.

(1997) studied the control of microstructure during hot working processes based on optimal control theory

and developed state-space models for describing the material response as well as the mechanics of the

process. This method was then applied to the optimization of grain size and process parameters by

appropriately defining the die geometry and ram velocity during the steady extrusion of plain carbon steel.
This work is expanding our existing capabilities in deformation process design (Ganapathysubramanian

and Zabaras, 2002, 2003) to account for dynamic recrystallization and related grain growth processes. It

provides a methodology to accurately model dynamic recrystallization (recrystallization during hot

deformation process) by incorporating explicitly the various microstructural length scales that describe the
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state of the evolving microstructure. Our work follows that of Busso (1998) and incorporates an instability

(localization) criterion for the onset of recrystallization. A hyperelastic–viscoplastic framework is adopted

and a fully implicit radial-return mapping is considered for the integration of the constitutive model. This is

described in Section 2. The kinetics of recrystallization are provided in great detail in Section 2.2.
A continuum sensitivity problem is then introduced and a novel computational scheme for evaluating

the sensitivity fields is presented. One of the more attractive features of this model is the sensitivity problem,

which follows a design-differentiate and then discretize approach, rather than the standard, discretize and

then design-differentiate approach. The sensitivity analysis, which involves the kinematic, constitutive,

contact and thermal sensitivity sub-problems is presented in Section 3. The computed sensitivities are

validated and used in a gradient based optimization framework for the control of microstructure during

deformation processes. To our knowledge, this is the first time that a rigorous sensitivity framework is

presented for deformation process design that accounts for dynamic recrystallization and grain growth
mechanisms.
2. Direct deformation problem

The direct problem can be stated as follows: Compute the time history of deformation, temperature and

material state of a body deforming as a result of external forces and/or deformation due to contact and

friction at the workpiece–die interface. This deformation problem, which involves coupled mechanical
and thermal effects, is sub-divided into kinematic, constitutive, contact and thermal sub-problems. We shall

only provide a brief outline of the solution strategy as this direct problem is described extensively in our

earlier publications (Srikanth and Zabaras, 1999a).

2.1. Problem description

ConsiderB0 as the initial configuration of the body (at time t ¼ 0) andBnþ1 as the current configuration.
The reference configuration Br is taken as B0 in the total Lagrangian formulation and Bn in an updated

Lagrangian formulation. The total deformation gradient is then defined as follows in a total Lagrangian

framework:
FðX; tÞ ¼ r0/ðX ; tÞ ¼ o/ðX ; tÞ
oX

; detF > 0 ð2:1Þ
where /ðX ; tÞ represents the deformation map from B0 to Bnþ1. Using an updated Lagrangian framework,

one can introduce the relative deformation gradient Fr and express Fnþ1 as shown below:
Fnþ1 ¼ r0/ðX ; tnþ1Þ ¼ rn
~/ðxn; tnþ1Þr0/ðX ; tnÞ ¼ FrFn ð2:2Þ
In the above and all following equations, the subscript nþ 1 will be omitted for all fields defined in the

current configuration and the subscript r will be used to indicate the reference configuration Bn in an

updated Lagrangian framework. In an appropriate kinematic framework for large deformation inelastic

analysis incorporating thermal effects, the total deformation gradient is decomposed into thermal, plastic

and elastic parts as follows:
F ¼ FeFpFh ð2:3Þ

where Fe is the elastic deformation gradient, Fp, the plastic deformation gradient and Fh is the thermal part

of the deformation gradient.
With the above kinematic framework, notions of an intermediate thermally expanded hot unstressed

configuration and that of an intermediate hot plastically deformed relaxed configuration are introduced.
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Assuming isotropic thermal expansion, the evolution of the intermediate thermally expanded unstressed

configuration is given as follows:
_FhðFhÞ�1 ¼ b _hI ð2:4Þ
where b is the thermal expansion coefficient, treated as a constant in this work and I is the second-order

identity tensor.

Following the work of Anand (Brown et al., 1989; Anand, 1985), the hyper-elastic constitutive equation

is written as
T ¼ Le½Ee� ð2:5Þ
where the strain measure, E
e
, is defined with respect to the intermediate (unstressed) configuration as

E
e ¼ lnUe. The corresponding conjugate stress measure T is the pullback of the Kirchhoff stress with

respect to Re,
T ¼ detðUeÞðReÞTTRe ð2:6Þ
Here Ue and Re are calculated from the polar decomposition, Fe ¼ ReUe, of Fe. For an isotropic material,

the elastic moduli Le is given by
Le ¼ 2lIþ j
�

� 2
3
l
�
I � I ð2:7Þ
where l is the shear modulus, j is the bulk modulus and I denotes the fourth order identity tensor.

The evolution of Fp is modelled using the classical J2 theory with one scalar state variable s which

represents the isotropic hardening material behavior. The evolution of the plastic deformation gradient Fp

is given by the normality rule,
L
p ¼ _FpðFpÞ�1 ð2:8Þ
where L
p ¼ D

p
and W

p ¼ 0.

The flow rule can be stated as
D
p ¼

ffiffiffi
3

2

r
_~� p

T
0

kT 0k
ð2:9Þ
where ~� is the equivalent strain rate to be defined in Section 2.2.

The equilibrium equation can be expressed on the reference configuration as
rr � Pr þ f ¼ 0 ð2:10Þ
where rr� represents the divergence in the reference configuration. The Piola–Kirchhoff I stress, Pr is

expressed as
Pr ¼ detFrTF
�T
r ð2:11Þ
Recall that for the total Lagrangian analysis, Fr ¼ F.
The solution of the deformation problem proceeds incrementally in time starting from the initial con-

figuration B0. In order to solve the equilibrium equations at time t ¼ tnþ1, the constitutive relationship
between the Cauchy stress T and the set involving the relative deformation gradient Fr and temperature h
should be evaluated. This is shown in Srikanth and Zabaras (1999a).
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2.2. Constitutive problem

Microstructure related length scales are now introduced into the constitutive framework to model the

dependence of the material behavior on its recrystallized state. We describe the microstructure through
internal state variables linked to the grain size as followed by Busso (1998) and Dunne et al. (1997). The

evolution of the equivalent tensile plastic strain is specified via the following functional form:
_~�p ¼ f ~r; s; h;
L0

L

� �
ð2:12Þ
where L0 is the initial mean grain size, ~r is the equivalent stress, s is the state variable denoting the

deformation resistance, h is the absolute temperature and L denotes the mean grain size. Before we proceed

with the detailed analysis of the constitutive model, we describe, for clarity, some of the terms to be used in

the following text. As discussed earlier, emphasis is here given to grain refinement and growth during

dynamic recrystallization in materials. We herein define primary recrystallization as the region of recrys-

tallization that mostly involves grain refinement and secondary recrystallization as that region which in-

volves grain growth. Prior to the onset of primary recrystallization, we assume L ¼ L0 and hence Eq. (2.12)
reduces to the form where strain rate sensitivity is independent of grain size.

The evolution of the isotropic scalar resistance s is assumed to take the form:
_s ¼ gð~r; s; h; LÞ ¼ hð~r; s; h; LÞ � _rð~r; s; h; LÞ ð2:13Þ

where _rð~r; s; h; LÞ is a dynamic recovery function (recovery during deformation) associated with recrys-

tallization, which describes the annihilation rate of dislocations and is responsible for the nucleation of new

grains. The function hð~r; s; h; LÞ is associated with deformation processes and is interpreted as the rate at
which the average dislocation density evolves (increases/decreases) in the material.

2.2.1. Hardening law

The hardening rate is defined as follows:
hð~r; s; h; LÞ ¼ ĥðs; s�; ~r; h; L; L0Þ ð2:14Þ

where s� represents a saturated or steady state condition. This law also needs to allow for strain softening due

to a sudden increase in local temperature. A functional dependence of s� consistent with the behavior that a

decrease inmean grain size causes the steady state dislocation density and hence s� to decrease is the following:
s� ¼ s�
L
L0

; _~�p; h

� �
ð2:15Þ
Experimental evidence suggest that the time scale associated with primary recrystallization is much smaller

than that required to reach a stable dynamic state. This dynamic balance is a concept implicit to our

analysis of the evolution of the deformation resistance. We assume that the deformation resistance reaches

a saturation state and this occurs only if there exists a dynamically stable state between grain refinement
and growth. We then let L� be the mean grain size when such a dynamically balanced state exists, then the

above equation can be modified, accounting for the above mentioned time scale effect as follows:
s� ¼ s�
L�

L0

; _~�p; h

� �
ð2:16Þ
2.2.2. Dynamic recrystallization recovery law

The driving force for recrystallization is known to be supplied by the stored energy towards the

nucleation of new grains both within the interior of the grain and at the grain boundaries. A general form of
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the dynamic recrystallization recovery function with this driving force given in terms of the deformation

resistance, s� sf , is the following:
_rð~r; s; h; LÞ ¼ fR bXRð~r; s; L; hÞðs� sf Þ_~�p ð2:17Þ
where fR is a material parameter which defines the magnitude of recovery, sf is the deformation resistance

at the end of primary recrystallization and the function bXR represents the volume fraction of the recrys-

tallized material associated with the current state ðs; LÞ. Expression for bXR can be motivated by the classical

treatment of the kinetics of grain growth, as is done in this effort. We further denote, for convenience,bXRð~r; s;L; hÞ by XR.

2.2.3. Kinetics of grain growth

The evolution of the average grain size during and immediately after primary recrystallization (during

dynamic recrystallization) is considered to be governed by the following equation:
_L ¼ lð~r; s; L; hÞ ¼ _Lref þ _Lgrow ð2:18Þ
where _Lref is a function that describes the overall grain refinement taking place during primary recrystal-

lization and _Lgrow represents the kinetics of grain growth process driven by grain boundary energies during

secondary recrystallization. _Lref is driven by the dynamic imbalance between nucleation and grain growth

events, ðL� L�Þ, and is given as follows:
_Lref ¼ �fRXR � L� L� � _~�p ð2:19Þ
where fR is a material constant and � x � denote x if xP 0 and 0 if x < 0.

Grain growth is now characterized by the following equation:
_Lgrow ¼ _L0ð1� expð� � XR � XRc �ÞÞ exp
�
� Q

Rh

�
L0

L

� �
ð2:20Þ
where _L0 is a material constant, the Arrhenius and inverse terms account for the increase in grain boundary

mobility for increasing temperatures and decreasing mean grain sizes, and XRc is the volume fraction
recrystallized at the end of primary recrystallization (i.e., the end of the refinement process).

Recrystallization can be treated as a localization phenomena and the critical strain for the onset of

recrystallization is given by
~�pC ¼ 2ffiffiffi
3

p Cc

l
ðfCs� � s0Þ ð2:21Þ
and ~�pR, the strain needed to complete strain softening and leaving the material in partially recrystallized

state, is given by
~�pR ¼ 2ffiffiffi
3

p CR

l
s�0f1ðL; L�Þ ð2:22Þ
where Cc;CR; fC are material parameters and f1 is a function measuring the dynamic imbalance.

2.3. Time integration of the constitutive problem

A brief review is presented here of the radial return algorithm implemented for the integration of the

constitutive problem. In the incremental constitutive problem, one evaluates the set ðTnþ1; snþ1;Lnþ1;F
p
nþ1Þ,

with the body configurations at time tn, tnþ1 and the set ðTn; sn; Ln;F
p
n ; hnþ1Þ known. Considering a backward

Euler technique for the time integration of Eqs. (2.8), (2.13) and (2.18), one can obtain the following:
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Fp
nþ1 ¼ expðDtDp

nþ1ÞFp
n ð2:23Þ

snþ1 ¼ sn þ Dtgð~rnþ1; snþ1; hnþ1; Lnþ1Þ ð2:24Þ

and
Lnþ1 ¼ Ln þ Dtlð~rnþ1; snþ1; hnþ1; Lnþ1Þ ð2:25Þ

We introduce a trial elastic deformation gradient, Fe

�, defined as Fe
� ¼ FrF

e
n ¼ Re

�U
e
�, where Fr has been

defined earlier. We then define the trial stress as T� ¼ Le½Ee

��. The equivalent trial stress is defined, from the

deviatoric part of the trial stress, as follows:
~r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
T

0
� � T

0
�

q
ð2:26Þ
and the pressure is defined as
p� ¼ �1
3
trT� ð2:27Þ
Following similar steps to the derivations in Weber and Anand (1990), it can be shown that T
0
� and T

0
nþ1 are

in the same direction:
Nnþ1 ¼
ffiffiffi
3

2

r
T

0
�

~r�
ð2:28Þ
Thus only the scalars, ~rnþ1, snþ1, pnþ1 and Lnþ1 need be evaluated. It can further be shown that pnþ1 ¼ p� and
that ~rnþ1 is governed by the following scalar equation:
~rnþ1 � ~r� þ 3Dtl_~�pð~rnþ1; snþ1; hnþ1; Lnþ1Þ ¼ 0 ð2:29Þ

The evolution equations for the deformation resistance snþ1 and the mean grain size Lnþ1 along with the

relation for the equivalent stress ~rnþ1 (i.e., Eqs. (2.24), (2.25) and (2.29)), are solved simultaneously, within a

time step, using a Newton–Raphson procedure incorporating a line search algorithm. This was found to be

very efficient for material models considered in the examples to be discussed later.

With these values of parameters, we can update the Cauchy stress as follows:
Tnþ1 ¼ exp
p�
j

� �
Re

�Tnþ1ðRe
�Þ

T ð2:30Þ
with T
0
nþ1 ¼ gnþ1T

0
�, where gnþ1 is the radial return factor defined as ~rnþ1

~r�
.

2.4. Kinematic, contact and thermal problems

The augmented Lagrangian formulation of Laursen and Simo is used to model contact and friction. This
implementation of contact is discussed extensively in Srikanth and Zabaras (1999b). A radial return type

algorithm (described above) is used for the time integration of the constitutive equations. The solution of a

generic loading increment involves the solution to the principle of virtual work (PVW) given as follows:
Z
Br

PrðFrÞ � rr~udVr ¼
Z
oBr

k � ~udAr þ
Z
Br

f � ~udVr ð2:31Þ
for every admissible test function ~u expressed over the reference configuration Br. The vector k is the

current contact traction expressed per unit area in C � oBr. The weak form is solved in an incremental-

iterative manner as a result of material as well as geometric non-linearities. The FEM is used for the
solution of the weak form and bilinear quadrilateral elements are used along with the assumed strain

analysis described in Srikanth and Zabaras (2001).
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In the absence of external heat sources, the balance of energy in the current configuration, takes the form

shown below (thermal sub-problem):
qc
oh
ot

¼ Wmech �rnþ1 � q ð2:32Þ
The isotropic constitutive equation for the heat flux q is given by Fourier�s law as follows:
q ¼ �Krnþ1h ð2:33Þ

where the conductivity Kðh; LÞP 0. The mechanical dissipation Wmech is usually specified in terms of the

plastic power by the following empirical law:
Wmech ¼ xT �Dp ¼ x~r_~�p ð2:34Þ

where x 2 ½0:85; 0:95� is a constant dissipation factor that represents the fraction of the plastic work that is

dissipated as heat. In this work, the non-dissipative latent heating is considered negligible in comparison to

the mechanical dissipation Wmech. An implicit Euler backward time-stepping scheme is used together with

the classical Galerkin finite element formulation towards the solution of the thermal sub-problem.
3. Process optimization and its relation to the continuum sensitivity approach

Metal forming process design includes the control of complex, non-linear deformation mechanisms in

order to achieve a desired objective that could consist of various criteria like, minimum work, desired shape

or uniform deformation in the product and/or desired microstructure in the product. In this design pro-

cedure, we assume that the forming sequence is identified a priori and we focus on selecting the optimum

design parameters in each of the operations/stages that make up the sequence. We introduce a gradient

based optimization framework and the evaluation of the gradients of the objectives functions and con-

straints is performed through an innovative continuum sensitivity method (CSM) that is described next.

3.1. Definition of sensitivity in a continuum sensitivity framework

We briefly summarize the definitions of shape and parameter sensitivity of a Lagrangian field X, used in

an updated Lagrangian (UL) framework. Sensitivity of any deformation or material state related field is the

quantitative measure of the change in these fields as a result of infinitesimal perturbations to the process

parameters (called parameter sensitivity), bp, or parameters that define the shape of the body (called shape

sensitivity), bs. Let bp (b in general for both shape as well as parameter sensitivities) denote the design

variables related to process conditions which could be for example the die surface or the deformation rate.

The dependence of the Lagrangian field X ¼ bXðxn; tÞ on bp can be expressed as follows:
X ¼ bXðxn; t; bpÞ ¼ bXð~xðX ; t; bpÞ; t; bpÞ ¼ eXðX ; t; bpÞ ð3:1Þ
The parameter sensitivity X
	
¼
b
X
	
ðxn; t; bp;DbpÞ is then defined as the total Gateaux differential of

X ¼ bXðxn; t; bpÞ in the direction Dbp computed at bp, i.e.,
b
X
	
ðxn; t; bp;DbpÞ ¼

e
X
	
ðX; t; bp;DbpÞ ¼

d

dk
eXðX ; t; bp þ kDbpÞ

����
k¼0

ð3:2Þ
The shape sensitivity X
	
¼
b
X
	
ðxn; t; bs;DbsÞ is defined (in a similar fashion to the parameter sensitivities) as

the total directional differential of X ¼ bXðxn; t; bsÞ in the direction Dbs (perturbation to the design vector)

computed at bs (shape design vector)
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Fig. 1. Schematic of the continuum sensitivity algorithm in a generic forming stage.
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b
X
	
ðxn; t; bs;DbsÞ ¼

e
X
	
ðX ; t; bs;DbsÞ ¼ X

	
ðY ; t; bs;DbsÞ ¼

d

dk
XðY ; t; bs þ kDbsÞ

����
k¼0

ð3:3Þ
where Y is the material point in the design independent, reference material configuration BR which results

in the various initial configurations (preforms) B0 through a smooth, bijective, design-dependent mapping.

This necessarily follows a domain parameterization approach in order to monitor the variation in the field

due to the variation in the initial shape of the body. Specific information on shape and parameter sensi-
tivities can be obtained from Ganapathysubramanian and Zabaras (2002, 2003), Badrinarayanan and

Zabaras (1996), Zabaras et al. (2000), and Srikanth and Zabaras (2000). A definition of sensitivity fields in

the context of a multi-stage forming process is given in Zabaras et al. (2003). The sensitivity framework

adopted here is based on the design-differentiation of the direct continuum equations. This continuum

sensitivity method (CSM) approach differs from other sensitivity methods available in the literature in that

most methods are based on a design-differentiation of the discretized direct problem. Fig. 1 describes the

various sub-problems involved in the CSM.
3.2. Sensitivity kinematic problem

In this section, the equations governing the sensitivity fields are computed at the continuum level. The

sensitivity of the equilibrium equation is directly considered so as to establish a principle of virtual work

like equation for the calculation of the sensitivity of deformation fields (Srikanth and Zabaras, 2000, 2001).

Consistent with the above analysis, the sensitivity constitutive, sensitivity thermal and sensitivity contact

equations are derived from the corresponding continuum equations rather than their numerically integrated

counterparts. The sensitivity deformation problem is developed on the reference configuration Br. The
design differentiation of the equilibrium equation (2.10) results in the following:
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rr � Pr

	
þ f

	
¼ 0 8xr 2 Br 8t 2 ½tn; tnþ1� ð3:4Þ
A variational form for the sensitivity equilibrium equation can be posed as follows (with the derivation

following a similar procedure as that presented in Srikanth and Zabaras, 2000): calculate x
	 ¼ bx	 ðxn; t; b;DbÞ

such that
Z
Br

P
	
r � rr~gdVr �

Z
Br

Pr½rr � LT
r � � ~gdVr �

Z
Br

ðPrL
T
r � rr~gÞdVr ¼

Z
oBr

k
	

	
� ½Lr � ðN �NÞ�k



� ~gdAr

ð3:5Þ

for every ~g, where ~g is a kinematically admissible sensitivity deformation field expressed over the reference

configuration Br. Also here, b is the design vector (can represent either bp or bs), Db represents a per-

turbation to the design vector, N is the unit normal in oBr and Lr 
 rr
b
x
	 ðxr; t; b;DbÞ ¼ F

	
rF

�1
r refers to the

design velocity gradient. In the case of parameter sensitivity analysis, the design velocity gradient at time t0,
L0 ¼ 0. In the case of shape sensitivity analysis, the design velocity gradient at time t0,

L0 ¼ r0

b
X
	
ðX ; bs;DbsÞ ¼ F

	
RF

�1
R . The solution of this variational sensitivity problem involves evaluating the

key relationships between P
	
r and ½F

	
r; h

	
� which is part of the constitutive sensitivity problem and between k

	

and x
	
, which is described by the sensitivity contact problem.

The relationship between P
	
r and ½x	 ; h

	
� is linear and is denoted as follows:
P
	
r ¼ A½F

	
r� þ Ch

	
þB ð3:6Þ
where A is a fourth order tensor and B;C are second order tensors, to be evaluated. These tensors will be

shown to be constants, defined from known direct fields at the current time and sensitivity fields at the
previous time step (see Section 3.3). The relationship between k

	
and x

	
is non-trivial and obtained from the

sensitivity contact problem as (Zabaras et al., 2000)
k
	
¼ D½x	 � þ d ð3:7Þ
where D is a second order tensor and d a vector.

3.3. Sensitivity constitutive problem

In this constitutive sensitivity problem, the relationship between T
	
and F

	
nþ1 and h

	
nþ1 as required by the

solution of the sensitivity thermo-mechanical problem is computed. As part of the update procedure, one

further computes the set ½T
	
; s
	
; L
	
;F
	
e� at the end of the time increment tnþ1 when the sensitivity of the total

deformation gradient F
	
nþ1 and the sensitivity of the temperature field h

	
nþ1 are given (evaluated). The

sensitivity of the mechanical dissipation W
	

mech is also computed as it is part of the driving force for the

thermal sensitivity problem at time tnþ1.

The solution of the direct thermo-mechanical problem is known at time tnþ1 i.e., the set ½T; s; L;Fe�, the
body configuration Bnþ1 as well as the temperature field hnþ1 are known at tnþ1. Due to non-linear material

response, the constitutive sensitivity problem is history dependent and the solution of the sensitivity

problem at time tn is assumed known, yielding the variables ½T
	
; s
	
; L
	
;F
	
e� at the beginning of the time

increment ðt ¼ tnÞ. It has been shown that the deformation sensitivity response does not explicitly depend
on the history of the temperature sensitivity but is dependent only on the instantaneous temperature

sensitivity response h
	
nþ1 (Ganapathysubramanian and Zabaras, 2002). The solution of the sensitivity sub-

problem is advanced within the incremental solution scheme by integrating the evolution equations for the
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sensitivity of the plastic and thermal deformation gradients, the evolution equation for the sensitivity of the

state variable s and the grain size L. As part of this sub-problem, the linear relationship between T
	
and ½F

	
; h
	
�

at time tnþ1 is computed. This relationship will be used to compute in Eq. (3.6) the constants A, B and C as

needed in the solution of the sensitivity thermo-mechanical problem (Eq. (3.5)). The time integration

scheme presented here is an Euler-backward time stepping algorithm.

3.3.1. Calculation of the linear relation between F
	
p
nþ1 and [F

	
e
nþ1; h

	
nþ1]

The evolution equation for Fp is given as, _FpðFpÞ�1 ¼ D
p
, assuming that the plastic spin W

p ¼ 0. Let us

consider the design differentiation of this evolution equation. The sensitivity of the plastic stretching rate,

D
	
p, specifies completely _F

	
p (we herein drop the subscript ðnþ 1Þ for convenience):
oF
	
p

ot
¼ D

p
F
	
p þD

	
pFp ð3:8Þ
D
	
p can be computed by taking the design-derivative of the flow rule (Eq. (2.9)):
D
	
p ¼ 3

2

f ð~r; s; hÞ
~r

T
	
0 þ 3

2

~rf~r � f
~r2

~r
	

 
þ fs

~r
s
	 þ fh

~r
h
	
þ fL

~r
L
	
!
T

0 ð3:9Þ
where the subscripts denote partial derivatives and T
	
0 is the deviatoric part of the sensitivity of the rotation

neutralized Cauchy stress, T
	
, and ~r

	
is the sensitivity of the equivalent stress, i.e.,
T
	
¼ Le½E

	
e� ð3:10Þ

~r
	
¼ 3

2

T
	
0 � T 0

~r
ð3:11Þ

	

One can further show that Ee is linearly related to F

	
e as follows (Badrinarayanan and Zabaras, 1996):
E
	
e ¼ 4ðUe þ IÞ�1

U
	
eðUe þ IÞ�1 ð3:12Þ

U
	
e ¼ sym ðUeÞ�1

sym ðFeÞTF
	
e

� �	 

ð3:13Þ

	

Thus from Eqs. (3.9)–(3.13), one can conclude that Dp depends explicitly only on F

	
e and not on F

	
p.

The evolution equation for s
	
and L

	
is obtained by design differentiation of the evolution equation for the

state variables (2.13) and (2.18):
os
	

ot
¼ g~r~r

	
þ gss

	 þ ghh
	
þ gLL

	
ð3:14Þ

oL
	

ot
¼ l~r~r

	
þ lss

	 þ lhh
	
þ lLL

	
ð3:15Þ
The functions describing the evolution of the state variables, i.e., the deformation resistance and the grain

size, are taken in this effort to be smooth enough to ensure differentiability. Any discontinuity/non-

differentiability of these functions will need to be addressed through regularization.

The evolution equation for F
	
h is derived as follows (Ganapathysubramanian and Zabaras, 2002):
F
	
hðFhÞ�1 ¼ bh

	
I ð3:16Þ
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An Euler-backward integration scheme over ðtn; tnþ1Þ applied to the evolution equations for the sensitivities

of the plastic deformation gradient (Eq. (3.8)), scalar state variables (Eqs. (3.14) and (3.15)) and thermal

deformation gradient (Eq. (3.16)) yields:

• Sensitivity of the plastic deformation gradient at time tnþ1:
F
	
p

DF

s
	 ¼

L
	

s
	 ¼

F
	
h

ðFpÞ�1 ¼ DFpF
	
p
nðFp

nÞ
�1ðDFpÞ�1 þ DtD

	
p
nþ1 ð3:17Þ
where from the constitutive sub-problem of the direct problem,
p ¼ FpðFp
nÞ

�1 ¼ expðDtDpÞ ð3:18Þ

with Dt ¼ tnþ1 � tn.

• Sensitivity of the scalar state variable s at time tnþ1:
s
	
n

1

1� DtðgsÞ
þ ðg~rÞDt
1� DtðgsÞ

~r
	
þ ðghÞDt
1� DtðgsÞ

h
	
þ ðgLÞDt
1� DtðgsÞ

L
	

ð3:19Þ
• Sensitivity of the scalar state variable L at time tnþ1:
¼ L
	
n

1

1� DtðlLÞ
þ ðl~rÞDt
1� DtðlLÞ

~r
	
þ ðlsÞDt
1� DtðlLÞ

s
	 þ ðlhÞDt

1� DtðlLÞ
h
	

ð3:20Þ
From the above two equations, s
	
nþ1 and L

	
nþ1 can be evaluated as follows:
m1 þ m2~r
	
þ m3h

	
; L

	
¼ n1 þ n2~r

	
þ n3h

	
ð3:21Þ
where m1, m2, m3, n1, n2, n3 are constants that can be evaluated by solving the above mentioned system.

• Sensitivity of the thermal deformation gradient at time tnþ1 (Ganapathysubramanian and Zabaras,

2002):
¼ bh
	
Fh ð3:22Þ
Substituting Eqs. (3.9) and (3.21) in Eq. (3.17), one finally obtains that
F
	
pðFpÞ�1 ¼ Cnþ1 þ anþ1T

	
0 þ bnþ1~r

	
T

0 þ cnþ1h
	
T

0 ð3:23Þ

where
Cnþ1 ¼ DFpðF
	
p
nðF

p
nÞ

�1ÞðDFpÞ�1 þ 3Dt
2~r

ðfsm1 þ fLn1ÞT
0
; anþ1 ¼

3fDt
2~r

;

bnþ1 ¼
3

2

~rðf~rÞ � f
~r2

(
þ ðfsÞm2

~r
þ ðfLÞn2

~r

)
Dt; cnþ1 ¼

3

2

ðfsÞm3

~r

�
þ ðfLÞn3

~r

�
Dt

ð3:24Þ
Eqs. (3.23) and (3.24) together with Eqs. (3.10)–(3.13) completely define the linear relation between F
	
p
nþ1

and ½F
	
e
nþ1; h

	
nþ1�.

3.3.2. Calculation of the linear relation between F
	
e
nþ1 and [F

	
nþ1; h

	
nþ1]

Starting from the multiplicative decomposition of the deformation gradient, one can write (dropping the

subscript ðnþ 1Þ)
F
	
¼ F

	
eFpFh þ FeF

	
pFh þ FeFpF

	
h ð3:25Þ
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Hence,
ðFeÞ�1ðF
	
F�1ÞFe ¼ ðFeÞ�1

F
	
e þ F

	
pðFpÞ�1 þ bh

	
I ð3:26Þ
Using Eqs. (3.13) and (3.10), it has been shown that T
	
0
nþ1 and ~r

	
nþ1 linearly depend on F

	
e
nþ1. Therefore

substitution of Eq. (3.23) in Eq. (3.26) results in a linear relation between F
	
e and ½F

	
; h
	
�:
ðFeÞ�1ðF
	
F�1ÞFe � Cnþ1 ¼ ðFeÞ�1

F
	
e þ anþ1T

	
0 þ bnþ1~r

	
T

0 þ ½cnþ1T
0 þ bI �h

	
ð3:27Þ
The linear relationship above can be expressed as (incorporating the subscript ðnþ 1Þ)
F
	
e
nþ1 ¼ AðVnþ1Þ½F

	
nþ1� þ AðVnþ1;V

	
nÞ þ BðVnþ1Þh

	
nþ1 ð3:28Þ
where A and B are second order tensor functions, A, a fourth order tensor function and V 
 ½T; s; L;Fp�.

3.3.3. Calculation of the linear relation between W
	

mech and [F
	
nþ1; h

	
nþ1]

Using Eq. (2.34), we can compute W
	

mech as follows (once again, we drop the subscript ðnþ 1Þ):
W
	

mech ¼ xð~r
	
f þ ~rf

	
Þ ¼ x½ðf þ ~rf~rÞ~r

	
þ ~rfss

	 þ ~rfhh
	
þ ~rfLL

	
� ð3:29Þ
Using the elastic moduli from Eqs. (2.7), (3.10) and (3.11), one can prove the following:
~r
	
¼ 3l

~r
E
	
e0 � T 0 ¼ 3l

~r
E
	
e � T 0 ð3:30Þ
and
~r
	
¼ 3lðG � T 0Þ � 2lcnþ1~r2h

	

~rð1þ 2lðanþ1 þ ~rbnþ1ÞÞ
ð3:31Þ
where G is the LHS of Eq. (3.27).

One finally obtains the following expression for W
	

mech at tnþ1:
W
	

mech;nþ1 ¼ KðVnþ1Þ � F
	
nþ1 þ k1ðVnþ1;V

	
nÞ þ k2ðVnþ1Þh

	
nþ1 ð3:32Þ
where K is a second order tensor function and k1; k2 are scalars. The sensitivity thermal problem and the

contact sensitivity problems are dealt the same way as described in Ganapathysubramanian and Zabaras

(2002).
The next section deals with numerical analysis and involves the comparison of the direct solution with

results available experimentally. A validation of the sensitivity analysis is also provided and several design

optimization problems are addressed. More details on how the present methodology can be incorporated in

a multi-stage process design can be obtained from Zabaras et al. (2003).
4. Numerical accuracy studies and design examples

Some numerical examples are considered to validate and study the performance of the proposed direct,

sensitivity and design algorithms. The computations were performed using Intel processors on the Cornell

Theory Center�s AC3 Velocity configuration. In all reported axially symmetric simulations, the a priori

stabilized F-bar method with a stabilization parameter � ¼ 10�03 was implemented for 4-noded quadri-
lateral elements (Srikanth and Zabaras, 2001). The die is assumed to be fixed and the workpiece moves

towards the die with a prescribed velocity in all the following examples. The workpiece material is taken to
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be 0.2% C Steel (cast) at an initial temperature of 1213 K, with a mean grain size of 91 lm. The specific

constitutive model used is defined by Eqs. (2.12), (2.13) and (2.18). The specific values of the mechanical

and thermal parameters are given in Table 1. In the various optimization problems defined in the examples,

a penalty method was used to convert a constrained optimization problem to an unconstrained one.
Furthermore, a quasi-Newton type algorithm was used to solve the unconstrained problem and the BFGS

scheme (Nocedal and Wright, 1999) to update the Hessian of the objective function. In the examples to be

considered, the following thermal boundary conditions were imposed. Convective boundary conditions are

imposed on all free surfaces, i.e., surfaces other than symmetry axes, that are not in contact. The convective

heat transfer coefficient is taken as h ¼ 6:7 W/(m2 K). The ambient (atmospheric) temperature is taken as

298 K. For simplicity, the die is assumed to be rigid and no heat transfer is considered between the die and

the workpiece.

In the following examples, upset forging between parallel dies of a right cylindrical billet (axisymmetric
analysis) is considered. A sample optimization problem is described in Fig. 2 (Ganapathysubramanian and

Zabaras, 2003). Further, the various die and preform shapes were approximated with B�ezier curves and the

design variables were selected to be the corresponding scalars in these approximations. The free surface of

the preform shown in Fig. 2 and labelled, RbðaÞ, is represented with a degree six B�ezier curve (with seven

Bernstein basis functions). Using the restriction on the slope due to symmetry, i.e., R0
bð0Þ ¼ 0, the repre-

sentation of Rb can be defined with six independent design variables bi, i ¼ 1; . . . ; 6 as follows:
Table

Mater

Mat

_~�0
Q

l
j
K
qc
x
L0

w
f
n1
s0
v
hs
as
n2
fR
fC
CR

Cc

p
q
fX
_L0
RbðaÞ ¼
X6
i¼1

bi/iðaÞ; Z ¼ 1:5a; 06 a6 1 ð4:1Þ
where Z represents the axial coordinate and the Bernstein basis functions are given as
1

ial parameters for 0.2% C steel at 1213 K (Busso, 1998)

erial parameter Value

2.618· 1011 s�1

283 kJmol�1

57.69 GPa

125.0 GPa

32.5 N/(sK)

4.884 MN/(m2 K)

0.90

91.0 lm
2.9

0.308

0.11

150.0 MPa

431 MPa

7800

1.55

0.069

120

0.728

59

59

0.8

5 Nmmp�2

1.0

6.0 · 106 m s�1



Fig. 2. A schematic describing a hypothetical preform design problem along with some possible optimization objectives.
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/1 ¼ ð1:0� aÞ5ð1:0þ 5:0aÞ; /2 ¼ 15:0ð1:0� aÞ4a2; /3 ¼ 20:0ð1:0� aÞ3a3;
/4 ¼ 15:0ð1:0� aÞ2a4; /5 ¼ 6:0ð1:0� aÞa5; /6 ¼ a6

ð4:2Þ
4.1. Specific material characterization

The specific constitutive model chosen is presented in Busso (1998). The material chosen for the analysis

following this section (0.2% C steel) has the evolution of the equivalent plastic strain (Eq. (2.12)) defined as

follows:
_~�p ¼ _~�0 exp
�Q

Rh

� �
L0

L

� �w

sinh
~r
fs

 !" #1=n1
ð4:3Þ
where the material parameters are defined in Table 1. The evolution of the deformation resistance, i.e., the

hardening law is defined by the following equation:
hð~r; s; h; LÞ ¼ hs 1
��� � s

s�

���assign 1
�

� s
s�

�
_~�p ð4:4Þ
where s�, the dynamically stable value of s, is defined as
s� ¼ v
_~�p

_~�0
exp

Q

Rh

� �
L�

L0

� �w
( )n2

ð4:5Þ
where v and n2 are material parameters.
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The kinetics of grain growth are defined through the evolution of the mean grain size as
_L ¼ �fRXR � L� L� � _~�p þ _L0ð1� expð� � XR � XRc �ÞÞ exp
�
� Q

Rh

�
L0

L

� �
ð4:6Þ
where fR, _L0 are material constants and XR denotes the volume fraction of grains recrystallized. The volume

fraction of grains recrystallized is given through the following expression:
XR ¼ 1� expf�AL
_LrectRg ð4:7Þ
where tR is the recrystallization time, AL is the mean grain and sub-grain boundary area per unit volume

which is active and capable of nucleation, and _Lrec the mean rate of grain refinement during recrystalli-

zation. The above expression is simplified to obtain (Busso, 1998):
XR ¼ 1� exp

(
� fX

L0

L�
~�p � ~�pC

_~�p

* +)
ð4:8Þ
Furthermore, the critical strain for the onset of recrystallization is given by
~�pC ¼ 2ffiffiffi
3

p Cc

l
ðfCS� � S0Þ ð4:9Þ
where Cc, fC are prescribed material parameters. In addition, ~�pR is given by
~�pR ¼ 2ffiffiffi
3

p CR

l
S�
0 �

Lw � L�w

Lw
0

� �
� ð4:10Þ
Additionally, an implicit relation (Busso, 1998) for the dynamically stable recrystallized mean grain size

in terms of the strain rate, the absolute temperature and the initial grain size is given as follows:
L� ¼ q
fvAn2

� �1=p

lnðAn1
n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2n1 þ 1

p
Þ
o�1=p

ð4:11Þ
where
A ¼
_~�p

_~�0

L�

L0

w

exp
Q

Rh

� �
ð4:12Þ
A Newton type iterative procedure is used to evaluate L� given the values of _~�p, h and L0.

4.2. Verification of direct analysis (Example 1)

A simulation is performed to obtain the uni-axial stress–strain response of the material at different strain

rates. These strain rates were chosen to be exactly those used in Busso (1998), so that an accuracy check can
be performed with the reported experimental results. These rates are 2.8 · 10�4, 4.5 · 10�3, 1.8 · 10�2 and

0.15 s�1. The measured grain size as well as the predicted grain sizes for 0.2% C steel are summarized

in Table 2. In addition to the evolution of the mean grain size, the stress–strain response is also shown in

Fig. 3. The proposed theory clearly describes a rapid decrease in mean grain size following the onset of

primary recrystallization for the higher strain rates. In addition, a good agreement of the steady state values

of the grain size is observed for these strain rates. It is, though, observed that the model prediction for low

strain rates is not accurate. One plausible reason for such behavior is that the mean grain size does not

attain a quasi-steady state value towards the end of primary recrystallization (involves multiple peak
recrystallization according to Busso, 1998). In other words, recrystallization is much lower than grain

growth when it should have been the other way around.



Table 2

Measured and predicted mean grain sizes (in lm) for 0.2% C steel (cast)

Strain rate (s�1) 0.2% C steel

Measured Predicted

0.15 45.8 40.2

1.8 · 10�2 51.9 47.7

4.5 · 10�3 55.9 57.1

2.8 · 10�4 56.2 102.1
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Fig. 3. The predicted evolution of the mean grain size and the material response in uni-axial tension at various strain rates (Example 1).
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4.3. Validation of the thermomechanical sensitivity analysis (Example 2)

This section involves the validation of the shape sensitivity analysis for a thermo-mechanical process by
a comparison with the forward finite difference method (FDM). Upset forging is considered between

parallel flat dies of a cylindrical billet (axisymmetric) 2 mm in diameter and 3 mm in height. The initial billet

was subject to a large height reduction of 33.34% in 500 s using a fixed time step of Dt ¼ 1:0 s at a nominal

strain rate of 0.001 s�1. The preform free surface is represented as in Eq. (4.1). The shape parameters in the

reference preform (cylindrical billet) are bi ¼ 1:0 mm, i ¼ 1; . . . ; 6. Shape sensitivities are taken with respect

to the free surface shape which is altered by perturbing the design variable b3. Analysis is performed using

the UL formulation with the coefficient of friction taken as 0.4. Fig. 4 depicts the distribution of the

equivalent stress, equivalent scalar state variable, temperature, mean grain size and the fraction recrys-
tallized in the deformed workpiece at the final time, t ¼ 500 s. This solution defines the reference solution at

which the sensitivity fields will be computed for a specified perturbation in the design variables.

Figs. 5–7 show at t ¼ 500 s the shape sensitivity of the state variable, temperature and the mean grain

size, respectively, using the CSM and FDM sensitivity computations.

The FDM sensitivity results are obtained using the results of the direct analysis and a forward difference

approximation for a perturbation of the design variable, b3, by Db3 ¼ 10�04 mm. Thus these results validate

the proposed continuum sensitivity analysis.



1
2

4

5
6

6

7

88

88

8 5.45E+01
7 5.04E+01
6 4.63E+01
5 4.21E+01
4 3.80E+01
3 3.39E+01
2 2.98E+01
1 2.57E+01

Equivalent stress
(MPa)

1

2 3
4

5

6

7

7

8

8

8

8 3.01E+02
7 2.84E+02
6 2.67E+02
5 2.50E+02
4 2.33E+02
3 2.16E+02
2 1.99E+02
1 1.82E+02

Scalar state variable
(MPa)

1
2

3

34

4

4

5

5

5

6

8 1220.06
7 1219.00
6 1217.94
5 1216.87
4 1215.81
3 1214.74
2 1213.68
1 1212.61

Temperature (K)

1

1

2

2

3

45

6

7

8 8.79E-02
7 8.26E-02
6 7.74E-02
5 7.21E-02
4 6.68E-02
3 6.16E-02
2 5.63E-02
1 5.10E-02

Mean grain size
(mm)

Fig. 4. Solution of the reference problem: the spatial variation of the equivalent stress, scalar state variable, temperature and grain size

at t ¼ 500 s (Example 2).
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4.4. Design optimization examples using the CSM

4.4.1. Preform design in open-die forging to minimize barrelling and the deviation of the mean grain size

(Example 3)

The objective here is to design the shape of a cylindrical preform of height 3.0 mm and fixed volume, that

when compressed with a flat die in an open-die forging process yields a circular cylinder of radius r0 ¼ 1:224
mm and height 2.0 mm, i.e., a final product of a given height with no barrelling. In addition, we are

interested to minimize the deviation in the mean grain size in the entire workpiece. The initial design

(preform shape) is chosen to correspond to that of a right circular cylinder with uniform radius 1.0 mm

(computed assuming volume conservation during deformation). The free surface RbðaÞ is represented with a

degree 6 B�ezier curve as given in Eq. (4.1). The finite dimensional optimization problem is posed as follows:
Fi
min
b

FðbÞ ¼ k1
N1

XN1

i¼1

ðxi1ðbÞ � r0Þ2 þ
k2
N2

XN2

i¼1

ðLiðbÞ� � LðbÞ �Þ2 ð4:13Þ
(a) FDM (b) CSM
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g. 5. Shape sensitivity of the scalar state variable at t ¼ 500 s computed using the FDM and CSM methods (Example 2).
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Fig. 6. Spatial variation of the shape sensitivity of the temperature at t ¼ 500 s computed using the FDM and CSM methods

(Example 2).
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(Example 2).
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where b ¼ fb1; . . . ; b6g and N1;N2 refer to the number of nodes on the free surface of the final product

(which can vary between optimization iterations). The total number of measuring points for the grain size

is here taken as the total number of Gauss integration points. k1, k2 are taken as 1.0Eþ 04 and 1.0Eþ 06

mm�2, respectively, by considering the ratio of the two objectives at the end of the initial deformation

problem. The initial and all subsequently obtained preforms were discretized with a 6 · 8 mesh for the
quarter geometry shown in Fig. 8. The variation of the objective function with the iteration index is shown

in Fig. 9. The optimal preforms and the product obtained is shown in Fig. 10. Also shown in Fig. 11 is the

variation of the variance of the mean grain size with optimization iterations.
1

2

2

2

3

4
5

6
7

8 0.090
7 0.084
6 0.078
5 0.072
4 0.066
3 0.060
2 0.054
1 0.048

Mean grain size (mm)

Fig. 8. Guess preform and grain size distribution in product for the thermo-mechanical preform forging design problem (Example 3).
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4.4.2. Die design for extrusion (Example 4)

This problem involves the design of the extrusion die shape so as to minimize the deviation of the grain

size at the exit. Here, we design an extrusion process with a die of area reduction of 12.0%. The initial radius
of the workpiece is 0.5 mm. It was extruded with a nominal displacement rate of 0.001 s�1. A total of 600

time steps were performed to reach steady-state conditions at the exit. A coefficient of friction of 0.01 was

assumed at the die–workpiece interface. The symmetry of the problem allowed modelling only half of the

geometry. The die surface is represented by a degree six ðn ¼ 6Þ B�ezier curve as follows:
rðaÞ ¼
Xnþ1

i¼1

Ci/iðaÞ; z ¼ 0:3a in mm 06 a6 1 ð4:14Þ
where Ci, i ¼ 1; . . . ; ðnþ 1Þ, are the algebraic control parameters. The Bernstein functions /iðaÞ are given as
/1 ¼ ð1:0� aÞ6; /2 ¼ 6:0ð1:0� aÞ5a; /3 ¼ 15:0ð1:0� aÞ4a2;
/4 ¼ 20:0ð1:0� aÞ3a3; /5 ¼ 15:0ð1:0� aÞ2a4; /6 ¼ 6:0ð1:0� aÞa5; /7 ¼ a6 ð4:15Þ
In order to obtain the same reduction for different die design parameters, the radius and slope (with respect
to the z-axis) at the inlet and exit are fixed (slope is taken as 0):
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C1 ¼ 0:5 mm ð4:16Þ
C7 ¼ 0:46 mm ð4:17Þ
C2 ¼ C1 ð4:18Þ
C6 ¼ C7 ð4:19Þ
With this selection of parameters, there are three die design parameters left. The initial (reference) values

are arbitrary and are selected as C3 ¼ 0:475, C4 ¼ 0:475, and C5 ¼ 0:475 (all of them in mm).

The finite dimensional optimization problem is posed as follows:
min
b

FðbÞ ¼ 1

N

XN
i¼1

ðliðbÞ� � lðbÞ �Þ2 ð4:20Þ
where b ¼ fb1; . . . ; b3g, li is the non-dimesionalized mean grain size (non-dimesionalized using the initial

grain size of 91 lm). The area of interest is defined as the volume at the exit (specified radius 0.45 mm),

every point of which has a z-axis coordinate of greater than 0.3 mm. N refers to the total number of
sampling nodal points in the region of interest. A perturbation of 10�3 mm is used for evaluating the

sensitivities with respect to the die shape.

Fig. 12 shows the variation of the die shape with iterations. The variation of the objective function with

the iteration index is shown in Fig. 13. In Fig. 14, we compare the grain sizes of the extruded product at

various iterations––i.e., with different die shapes. The maximum grain size and the average grain size in the

product obtained using the guess die shape was observed to be approximately 234 and 130 lm, respectively.

Thus the guess die shape leads to a huge increase in grain size in the extruded product (from an initial grain

size of 91 lm). This leads to a large variation in the mean grain size in the extruded product. In the product
obtained using the optimum die shape, an average grain size of 144 lm and a variation of about 80 lm was

observed. The variance is nearly halved as seen in Fig. 13 that presents the objective function.
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4.4.3. Two-stage forging process design (Example 5)

This example presents a forging process design for producing an axisymmetric disk in two stages. The

initial billet is a right cylinder of 1.6 mm height and 1.04 mm radius. The height reduction at r ¼ 0, in the

first stage is 0.3 mm and in the second stage is 0.4 mm. A quarter of the billet is modelled in the simulation
and design. The friction coefficient in the preforming and finishing stages is taken as 0.2. The material is

assumed to be 0.2% C Steel at an initial temperature of 1213 K. The material properties are the same as

those used in the previous examples. The design problem involves a preforming stage using a flat die in an

open-die forging process. The finishing stage is a closed die of desired shape. The volume of the billet is

chosen so that the final product occupies the finishing die completely.

The preforming die surface is represented using a degree six B�ezier curve with five independent variables.
rðaÞ ¼ 0:9a; zbðaÞ ¼
X7
i¼1

bi/iðaÞ ð4:21Þ
The die height at r ¼ 0 was specified and the die shape is assumed to have a zero slope at r ¼ 0. The
following basis functions are assumed:
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Fig. 14. Variation in grain sizes in the extruded product obtained at different iterations during the design process (Example 4).
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/1 ¼ ð1� aÞ6; /2 ¼ 6ð1� aÞ5a; /3 ¼ 15ð1� aÞ4a2; /4 ¼ 20ð1� aÞ3a3;
/5 ¼ 15ð1� aÞ2a4; /6 ¼ 6ð1� aÞa5; /7 ¼ a7 ð4:22Þ
We herein choose b6 and b7 ¼ 0:9 mm, in order to fix the height and slope at r ¼ 0.

In addition, the finishing die is defined as follows:
shapeðgÞ ¼

rðgÞ ¼ 1:3 � ð1� gÞ

zðgÞ ¼

70:6 � g3 þ 1:35 g 2 ½0; 0:08�
�416:2 � ðg� 0:17Þ3 þ 1:9 g 2 ½0:08; 0:17�
1:90 g 2 ½0:17; 0:37�
15:9� 79:4 � gþ 295:9 � g2

�511:9 � g3 þ 403:4 � g4

�118:1 � g5 g 2 ½0:37; 1�

8>>>>>><>>>>>>:

8>>>>>>>><>>>>>>>>:

We are here interested to design the preforming die shape so that the variation in the grain sizes in the
finished product is minimized. Mathematically, this is represented as follows:
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min
b

FðbÞ ¼ 1

x � N
XN
i¼1

ðLiðbÞ � LðbÞÞ2 ð4:23Þ
where x ¼ 8:281� 10�3 mm�2 is the non-dimensionalizing factor, N denotes the total number of Gauss

integration points in the product, L denotes the grain size (in mm) and the �ð�Þ is used to represent the

average grain size.

Fig. 15 shows the variation of the die shape during optimization iterations whereas Figs. 16 and 17

present the mean grain sizes in the intermediate preform (product after stage I) and the finished product.

The variation of the objective function with the iteration index is shown in Fig. 18. Quantitatively speaking,

the average grain size in the product obtained using the guess preforming die shape was observed to be
around 64 lm with an average variation of about 40% of the initial grain size. In the product obtained using

the optimal die shape, the average grain size was observed to be about 56 lm and the variation was seen to

be less than 20% of the initial grain size.
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Fig. 17. Variation of the mean grain sizes in the final product using various die shapes at different stages of the optimization process

(Example 5).
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5. Discussion and conclusions

A hyperelastic, viscoplastic constitutive theory for large deformations has been proposed and imple-

mented to describe the evolution of microstructural features at elevated temperatures. It involved

descriptions of the kinetics of the grain size and the evolution of the dislocation resistance during dynamic

recrystallization. As the current study deals only with dynamic recrystallization, the models used cannot

predict the dynamics of static recrystallization. It is also observed that the onset of recrystallization is a
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natural outcome of the evolution equations for the internal state variables, grain size L and the deformation

resistance s. The volume fraction recrystallized is commonly defined by Eq. (4.7) and has been approxi-

mated to Eq. (4.8) in Busso (1998). Further, in Busso (1998), multiple peak recrystallization has also been

analyzed by keeping track of the accumulated plastic strain since previous primary recrystallization. This is
not valid since, the onset of recrystallization is no more an outcome of the state evolution equations alone.

In this effort, multiple peak recrystallization is not considered even though it can be observed in many

materials at low strain rates.

Furthermore, a novel and accurate continuum Lagrangian sensitivity framework was presented for non-

isothermal, large deformations during metal forming processes. The CSM method was validated by

comparing with the results obtained by a forward finite difference scheme. The computed sensitivities were

used in a gradient-based optimization scheme to address a number of hot forming design examples

including preform and die designs for industrial forming processes. Although, most aspects dealt with in
this effort are phenomenological in nature, this work offers a first step and an attractive framework

for future development of computational algorithms of process design for explicit control of the micro-

structure. Future efforts could incorporate static recrystallization, texture effects through the use of dis-

location gradient concepts as well as anisotropy of grain boundary energies.
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